Global QoS Policy Optimization in SD-WAN

Pham Tran Anh Quang, Jérémie Leguay, Xuan Gong, Huiying Xu
{"title":"Global QoS Policy Optimization in SD-WAN","authors":"Pham Tran Anh Quang, Jérémie Leguay, Xuan Gong, Huiying Xu","doi":"10.1109/NetSoft57336.2023.10175407","DOIUrl":null,"url":null,"abstract":"In modern SD-WAN networks, a global controller is able to steer traffic on different paths based on application requirements and global intents. However, existing solutions cannot dynamically tune the way bandwidth is shared between flows inside each network, in particular when the available capacity is uncertain due to cross traffic. In this context, we propose a global QoS (Quality of Service) policy optimization model that dynamically adjusts rate limits of applications based on their requirements to follow the evolution of network conditions. It relies on a novel cross-traffic estimator for the available bandwidth of overlay links that only exploits already available measurements. We propose a centralized local search algorithm with cross-traffic estimation and show in packet-level simulations a significant performance improvement in terms of SLA (Service Level Agreement) satisfaction. The adaptive tuning of load balancing and QoS policies based on cross-traffic estimation can improve SLA satisfaction by 40% compared to static policies.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In modern SD-WAN networks, a global controller is able to steer traffic on different paths based on application requirements and global intents. However, existing solutions cannot dynamically tune the way bandwidth is shared between flows inside each network, in particular when the available capacity is uncertain due to cross traffic. In this context, we propose a global QoS (Quality of Service) policy optimization model that dynamically adjusts rate limits of applications based on their requirements to follow the evolution of network conditions. It relies on a novel cross-traffic estimator for the available bandwidth of overlay links that only exploits already available measurements. We propose a centralized local search algorithm with cross-traffic estimation and show in packet-level simulations a significant performance improvement in terms of SLA (Service Level Agreement) satisfaction. The adaptive tuning of load balancing and QoS policies based on cross-traffic estimation can improve SLA satisfaction by 40% compared to static policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SD-WAN的全局QoS策略优化
在现代SD-WAN网络中,全局控制器能够根据应用程序需求和全局意图引导不同路径上的流量。然而,现有的解决方案不能动态地调整每个网络中的流之间共享带宽的方式,特别是当可用容量由于交叉流量而不确定时。在此背景下,我们提出了一种全局QoS (Quality of Service)策略优化模型,该模型可以根据应用的需求动态调整速率限制,以适应网络条件的演变。它依赖于一种新的交叉流量估计器,用于覆盖链路的可用带宽,该估计器仅利用已有的测量值。我们提出了一种具有交叉流量估计的集中式本地搜索算法,并在分组级模拟中显示了SLA(服务水平协议)满意度方面的显着性能改进。与静态策略相比,基于交叉流量估计的负载平衡和QoS策略的自适应调优可以将SLA满意度提高40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1