An empirical comparison of ID3 and HONNs for distortion invariant object recognition

L. Spirkovska, M. B. Reid
{"title":"An empirical comparison of ID3 and HONNs for distortion invariant object recognition","authors":"L. Spirkovska, M. B. Reid","doi":"10.1109/TAI.1990.130402","DOIUrl":null,"url":null,"abstract":"The authors present results of experiments comparing the performance of the ID3 symbolic learning algorithm with a higher-order neural network (HONN) in the distortion invariant object recognition domain. In this domain, the classification algorithm needs to be able to distinguish between two objects regardless of their position in the input field, their in-plane rotation, or their scale. It is shown that HONNs are superior to ID3 with respect to recognition accuracy, whereas, on a sequential machine, ID3 classifies examples faster once trained. A further advantage of HONNs is the small training set required. HONNs can be trained on just one view of each object, whereas ID3 needs an exhaustive training set.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The authors present results of experiments comparing the performance of the ID3 symbolic learning algorithm with a higher-order neural network (HONN) in the distortion invariant object recognition domain. In this domain, the classification algorithm needs to be able to distinguish between two objects regardless of their position in the input field, their in-plane rotation, or their scale. It is shown that HONNs are superior to ID3 with respect to recognition accuracy, whereas, on a sequential machine, ID3 classifies examples faster once trained. A further advantage of HONNs is the small training set required. HONNs can be trained on just one view of each object, whereas ID3 needs an exhaustive training set.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
畸变不变目标识别中ID3和honn的经验比较
给出了ID3符号学习算法与高阶神经网络(HONN)在畸变不变目标识别领域的性能比较实验结果。在这个领域中,分类算法需要能够区分两个物体,而不管它们在输入域中的位置、它们的平面内旋转或它们的尺度。结果表明,在识别精度方面,honn优于ID3,而在顺序机器上,ID3在训练后对样本进行分类的速度更快。honn的另一个优点是所需的训练集很小。honn可以在每个对象的一个视图上进行训练,而ID3需要一个详尽的训练集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning steppingstones for problem solving Conventional and associative memory-based spelling checkers Relationships in an object knowledge representation model A tool for building decision-support-oriented expert systems Generation of feature detectors for texture discrimination by genetic search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1