The minimum number of scanning windows required for effective maximum likelihood estimation of image texture parameters and additive noise variance

M. Uss, B. Vozel, K. Chehdi, V. Lukin, S. Abramov
{"title":"The minimum number of scanning windows required for effective maximum likelihood estimation of image texture parameters and additive noise variance","authors":"M. Uss, B. Vozel, K. Chehdi, V. Lukin, S. Abramov","doi":"10.1109/MSMW.2010.5546161","DOIUrl":null,"url":null,"abstract":"In this paper, we dealt with the problem of noise variance estimation from additive mixture of the noise and an underlying image texture. Assuming fBm-model for image texture, the number Me(H,SNR)of SWs has been obtained such that statistical efficiency e of the previously designed ML noise variance estimator is close to a predefined level e = 0.9. The value Me defines a boundary between asymptotic and non-asymptotic modes of the ML estimator with respect to image fragment size (number of SWs available). For fixed SNR, Me takes minimum values for smooth textures ( H close to 0.8) and increases fast as H approaches 0. As a function of SNR, Me has minimum at approximately SNR = 1.5 and increases fast as SNR deviates from this value. These results are useful for establishing the area of applicability of noise variance estimators and to assure the quality of estimates obtained from an image texture of a given size, roughness and SNR.","PeriodicalId":129834,"journal":{"name":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2010.5546161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we dealt with the problem of noise variance estimation from additive mixture of the noise and an underlying image texture. Assuming fBm-model for image texture, the number Me(H,SNR)of SWs has been obtained such that statistical efficiency e of the previously designed ML noise variance estimator is close to a predefined level e = 0.9. The value Me defines a boundary between asymptotic and non-asymptotic modes of the ML estimator with respect to image fragment size (number of SWs available). For fixed SNR, Me takes minimum values for smooth textures ( H close to 0.8) and increases fast as H approaches 0. As a function of SNR, Me has minimum at approximately SNR = 1.5 and increases fast as SNR deviates from this value. These results are useful for establishing the area of applicability of noise variance estimators and to assure the quality of estimates obtained from an image texture of a given size, roughness and SNR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对图像纹理参数和加性噪声方差进行有效的最大似然估计所需的最小扫描窗口数
在本文中,我们处理了从噪声和底层图像纹理的加性混合中估计噪声方差的问题。假设图像纹理采用fbm模型,得到SWs的个数Me(H,SNR),使得先前设计的ML噪声方差估计器的统计效率e接近预定义水平e = 0.9。值Me定义了ML估计器关于图像片段大小(可用的SWs数量)的渐近和非渐近模式之间的边界。对于固定的信噪比,Me取平滑纹理的最小值(H接近0.8),并在H接近0时快速增加。作为信噪比的函数,Me在信噪比约为1.5时最小,并在信噪比偏离该值时迅速增大。这些结果有助于确定噪声方差估计器的适用范围,并确保从给定尺寸、粗糙度和信噪比的图像纹理中获得的估计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical model for calculating eigen-mode spectrum of complicated cross-section waveguides Energy of activation of saccharose in solutions Robust DFT-based signal processing in Micro-Doppler radars Coupled disk, half-disk and spiral resonators with whispering gallery-like modes Azimuth angle errors as affected Fresnel diffraction on the large obstacles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1