Non-fungible Token Price Prediction with Multivariate LSTM Neural Networks

Jerome Branny, Rolf Dornberger, T. Hanne
{"title":"Non-fungible Token Price Prediction with Multivariate LSTM Neural Networks","authors":"Jerome Branny, Rolf Dornberger, T. Hanne","doi":"10.1109/ISCMI56532.2022.10068442","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how to forecast Non-Fungible Token (NFT) sale prices by using multiple multivariate time series datasets containing features related to the NFT market space. We examined eight recent studies regarding the forecasting and valuation of NFTs and compared their most important findings. This laid the fundamental work for two separate machine learning prototypes based on Long Short-Term Memory (LSTM) which are able to forecast the sale price history of an individual NFT asset. Root Mean Squared Errors (RMSE) of 0.2975 and 0.24 were obtained which appears to be promising.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate how to forecast Non-Fungible Token (NFT) sale prices by using multiple multivariate time series datasets containing features related to the NFT market space. We examined eight recent studies regarding the forecasting and valuation of NFTs and compared their most important findings. This laid the fundamental work for two separate machine learning prototypes based on Long Short-Term Memory (LSTM) which are able to forecast the sale price history of an individual NFT asset. Root Mean Squared Errors (RMSE) of 0.2975 and 0.24 were obtained which appears to be promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多元LSTM神经网络的不可替代代币价格预测
在本文中,我们研究了如何通过使用包含与NFT市场空间相关特征的多个多元时间序列数据集来预测非可替换代币(NFT)的销售价格。我们研究了最近关于nft预测和评估的八项研究,并比较了它们最重要的发现。这为两个独立的基于长短期记忆(LSTM)的机器学习原型奠定了基础,它们能够预测单个NFT资产的销售价格历史。获得的均方根误差(RMSE)为0.2975和0.24,这似乎是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Gain-Ant Colony Algorithm for Green Vehicle Routing Problem Fake News Detection Using Deep Learning and Natural Language Processing Optimizing Speed and Accuracy Trade-off in Machine Learning Models via Stochastic Gradient Descent Approximation Modeling and Optimization of Two-Chamber Muffler by Genetic Algorithm A Novel Approach for Federated Learning with Non-IID Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1