PSO neural inverse optimal control for a linear induction motor

V. Lopez, E. Sánchez, A. Alanis
{"title":"PSO neural inverse optimal control for a linear induction motor","authors":"V. Lopez, E. Sánchez, A. Alanis","doi":"10.1109/CEC.2013.6557801","DOIUrl":null,"url":null,"abstract":"In this paper, a discrete-time inverse optimal control is applied to a three-phase linear induction motor (LIM) in order to achieve trajectory tracking of a position reference. An online neural identifier, built using a recurrent high-order neural network (RHONN) trained with the Extended Kalman Filter (EKF), is employed in order to model the system. The control law calculates the input voltage signals which are inverse optimal in the sense that they minimize a cost functional without solving the Hamilton-Jacobi-Bellman (HJB) equation. Particle Swarm Optimization (PSO) algorithm is employed in order to improve identification and control performance. The applicability of the proposed control scheme is illustrated via simulations.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a discrete-time inverse optimal control is applied to a three-phase linear induction motor (LIM) in order to achieve trajectory tracking of a position reference. An online neural identifier, built using a recurrent high-order neural network (RHONN) trained with the Extended Kalman Filter (EKF), is employed in order to model the system. The control law calculates the input voltage signals which are inverse optimal in the sense that they minimize a cost functional without solving the Hamilton-Jacobi-Bellman (HJB) equation. Particle Swarm Optimization (PSO) algorithm is employed in order to improve identification and control performance. The applicability of the proposed control scheme is illustrated via simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性感应电动机的粒子群神经逆最优控制
本文将离散时间逆最优控制应用于三相直线感应电动机,以实现位置基准的轨迹跟踪。利用扩展卡尔曼滤波(EKF)训练的递归高阶神经网络(RHONN)建立在线神经辨识器,对系统进行建模。控制律计算的输入电压信号是逆最优的,即它们在不求解Hamilton-Jacobi-Bellman (HJB)方程的情况下最小化代价函数。为了提高辨识和控制性能,采用了粒子群算法(PSO)。通过仿真验证了所提控制方案的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on two-step search based on PSO to improve convergence and diversity for Many-Objective Optimization Problems An evolutionary approach to the multi-objective pickup and delivery problem with time windows A new performance metric for user-preference based multi-objective evolutionary algorithms A new algorithm for reducing metaheuristic design effort Evaluation of gossip Vs. broadcast as communication strategies for multiple swarms solving MaOPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1