Equivalence between minimal generative model graphs and directed information graphs

Christopher J. Quinn, N. Kiyavash, T. Coleman
{"title":"Equivalence between minimal generative model graphs and directed information graphs","authors":"Christopher J. Quinn, N. Kiyavash, T. Coleman","doi":"10.1109/ISIT.2011.6034116","DOIUrl":null,"url":null,"abstract":"We propose a new type of probabilistic graphical model, based on directed information, to represent the causal dynamics between processes in a stochastic system. We show the practical significance of such graphs by proving their equivalence to generative model graphs which succinctly summarize interdependencies for causal dynamical systems under mild assumptions. This equivalence means that directed information graphs may be used for causal inference and learning tasks in the same manner Bayesian networks are used for correlative statistical inference and learning.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6034116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We propose a new type of probabilistic graphical model, based on directed information, to represent the causal dynamics between processes in a stochastic system. We show the practical significance of such graphs by proving their equivalence to generative model graphs which succinctly summarize interdependencies for causal dynamical systems under mild assumptions. This equivalence means that directed information graphs may be used for causal inference and learning tasks in the same manner Bayesian networks are used for correlative statistical inference and learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小生成模型图与有向信息图的等价性
我们提出了一种新的基于有向信息的概率图模型来表示随机系统中过程之间的因果动态。我们通过证明它们与生成模型图的等价性来展示这种图的实际意义,生成模型图简洁地总结了因果动力系统在温和假设下的相互依赖性。这种等价意味着有向信息图可以用于因果推理和学习任务,就像贝叶斯网络用于相关的统计推理和学习一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the capacity of a hybrid broadcast multiple access system for WDM networks Almost separating and almost secure frameproof codes Combinatorial Message Sharing for a refined multiple descriptions achievable region Trapping sets of structured LDPC codes Minimal trellis for systematic recursive convolutional encoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1