{"title":"Control Design for Vertical Wall-perching of Aerial Robot with Event-Triggered Control Approach","authors":"S. Gupta, J. K. Mohanta, L. Behera, S. Samanta","doi":"10.1109/SILCON55242.2022.10028851","DOIUrl":null,"url":null,"abstract":"This paper proposes an event-triggered control approach for the application of vertical wall-perching of an aerial robot. A finite time position tracking controller is developed for nano-quadcopter. A recursive finite time stable manifold has been designed for the convergence of the error states to zero in finite time. Next, sliding mode control laws for all the control inputs are derived from the designed stable sliding manifold. Furthermore, from the Lyapunov stability theory, periodic event-triggering conditions are derived to minimize resource utilization. The Periodic event trigger controller provides the control laws next trigger time. The perching of nano-quadcopter will help in long time surveillance in remote locations.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper proposes an event-triggered control approach for the application of vertical wall-perching of an aerial robot. A finite time position tracking controller is developed for nano-quadcopter. A recursive finite time stable manifold has been designed for the convergence of the error states to zero in finite time. Next, sliding mode control laws for all the control inputs are derived from the designed stable sliding manifold. Furthermore, from the Lyapunov stability theory, periodic event-triggering conditions are derived to minimize resource utilization. The Periodic event trigger controller provides the control laws next trigger time. The perching of nano-quadcopter will help in long time surveillance in remote locations.