Multi-camera Scheduling for Video Production

F. Daniyal, A. Cavallaro
{"title":"Multi-camera Scheduling for Video Production","authors":"F. Daniyal, A. Cavallaro","doi":"10.1109/CVMP.2011.8","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm for automated video production based on content ranking. The proposed algorithm generates videos by performing camera selection while minimizing the number of inter-camera switch. We model the problem as a finite horizon Partially Observable Markov Decision Process over temporal windows and we use a multivariate Gaussian distribution to represent the content-quality score for each camera. The performance of the proposed approach is demonstrated on a multi-camera setup of fixed cameras with partially overlapping fields of view. Subjective experiments based on the Turing test confirmed the quality of the automatically produced videos. The proposed approach is also compared with recent methods based on Recursive Decision and on Dynamic Bayesian Networks and its results outperform both methods.","PeriodicalId":167135,"journal":{"name":"2011 Conference for Visual Media Production","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference for Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVMP.2011.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

We present a novel algorithm for automated video production based on content ranking. The proposed algorithm generates videos by performing camera selection while minimizing the number of inter-camera switch. We model the problem as a finite horizon Partially Observable Markov Decision Process over temporal windows and we use a multivariate Gaussian distribution to represent the content-quality score for each camera. The performance of the proposed approach is demonstrated on a multi-camera setup of fixed cameras with partially overlapping fields of view. Subjective experiments based on the Turing test confirmed the quality of the automatically produced videos. The proposed approach is also compared with recent methods based on Recursive Decision and on Dynamic Bayesian Networks and its results outperform both methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频制作的多摄像机调度
提出了一种基于内容排序的视频自动制作算法。该算法在最小化摄像机间切换次数的同时进行摄像机选择,生成视频。我们将问题建模为时间窗口上的有限视界部分可观察马尔可夫决策过程,并使用多元高斯分布来表示每个摄像机的内容质量分数。在视场部分重叠的固定摄像机的多摄像机设置中验证了该方法的性能。基于图灵测试的主观实验证实了自动生成视频的质量。并将该方法与基于递归决策和动态贝叶斯网络的方法进行了比较,结果表明该方法优于这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic Kernels Binarized - A Feature Descriptor for Fast and Robust Matching Flowlab - An Interactive Tool for Editing Dense Image Correspondences Automatic Object Segmentation from Calibrated Images Depth Estimation from Three Cameras Using Belief Propagation: 3D Modelling of Sumo Wrestling Practical Image-Based Relighting and Editing with Spherical-Harmonics and Local Lights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1