Super-resolution DOA estimation via continuous group sparsity in the covariance domain

Cheng-Yu Hung, M. Kaveh
{"title":"Super-resolution DOA estimation via continuous group sparsity in the covariance domain","authors":"Cheng-Yu Hung, M. Kaveh","doi":"10.1109/ICASSP.2016.7472239","DOIUrl":null,"url":null,"abstract":"Estimation of directions-of-arrival (DoA) in the spatial co-variance model is studied. Unlike the compressed sensing methods which discretize the search domain into possible directions on a grid, the theory of super resolution is applied to estimate DoAs in the continuous domain. We reformulate the spatial spectral covariance model into a Multiple Measurement Vector (MMV)-like model, and propose a block total variation norm minimization approach, which is the analog of Group Lasso in the super-resolution framework and that promotes the group-sparsity. The DoAs can be estimated by solving its dual problem via semidefinite programming. This gridless recovery approach is verified by simulation results for both uncorrelated and correlated source signals.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Estimation of directions-of-arrival (DoA) in the spatial co-variance model is studied. Unlike the compressed sensing methods which discretize the search domain into possible directions on a grid, the theory of super resolution is applied to estimate DoAs in the continuous domain. We reformulate the spatial spectral covariance model into a Multiple Measurement Vector (MMV)-like model, and propose a block total variation norm minimization approach, which is the analog of Group Lasso in the super-resolution framework and that promotes the group-sparsity. The DoAs can be estimated by solving its dual problem via semidefinite programming. This gridless recovery approach is verified by simulation results for both uncorrelated and correlated source signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于协方差域连续群稀疏度的超分辨DOA估计
研究了空间协方差模型中到达方向的估计。与压缩感知方法将搜索域离散到网格上的可能方向不同,该方法采用超分辨率理论来估计连续域的doa。将空间谱协方差模型重构为一种类似于多测量向量(Multiple Measurement Vector, MMV)的模型,并提出了一种块总变差范数最小化方法,该方法模拟了超分辨率框架下的群Lasso方法,提高了群稀疏性。通过半定规划求解其对偶问题,可以估计出doa。仿真结果验证了该方法对不相关和相关源信号的无网格恢复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1