{"title":"Animating rotation with quaternion curves","authors":"Ken Shoemake","doi":"10.1145/325334.325242","DOIUrl":null,"url":null,"abstract":"Solid bodies roll and tumble through space. In computer animation, so do cameras. The rotations of these objects are best described using a four coordinate system, quaternions, as is shown in this paper. Of all quaternions, those on the unit sphere are most suitable for animation, but the question of how to construct curves on spheres has not been much explored. This paper gives one answer by presenting a new kind of spline curve, created on a sphere, suitable for smoothly in-betweening (i.e. interpolating) sequences of arbitrary rotations. Both theory and experiment show that the motion generated is smooth and natural, without quirks found in earlier methods.","PeriodicalId":163416,"journal":{"name":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325334.325242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2100
Abstract
Solid bodies roll and tumble through space. In computer animation, so do cameras. The rotations of these objects are best described using a four coordinate system, quaternions, as is shown in this paper. Of all quaternions, those on the unit sphere are most suitable for animation, but the question of how to construct curves on spheres has not been much explored. This paper gives one answer by presenting a new kind of spline curve, created on a sphere, suitable for smoothly in-betweening (i.e. interpolating) sequences of arbitrary rotations. Both theory and experiment show that the motion generated is smooth and natural, without quirks found in earlier methods.