Asymmetric, Non-unimodal Kernel Regression for Image Processing

Damith J. Mudugamuwa, W. Jia, Xiangjian He
{"title":"Asymmetric, Non-unimodal Kernel Regression for Image Processing","authors":"Damith J. Mudugamuwa, W. Jia, Xiangjian He","doi":"10.1109/DICTA.2010.34","DOIUrl":null,"url":null,"abstract":"Kernel regression has been previously proposed as a robust estimator for a wide range of image processing tasks, including image denoising, interpolation and super resolution. In this article we propose a kernel formulation that relaxes the usual symmetric and unimodal properties to effectively exploit the smoothness characteristics of natural images. The proposed method extends the kernel support along similar image characteristics to further increase the robustness of the estimates. Application of the proposed method to image denoising yields significant improvement over the previously reported regression methods and produces results comparable to the state-of the-art denoising techniques.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel regression has been previously proposed as a robust estimator for a wide range of image processing tasks, including image denoising, interpolation and super resolution. In this article we propose a kernel formulation that relaxes the usual symmetric and unimodal properties to effectively exploit the smoothness characteristics of natural images. The proposed method extends the kernel support along similar image characteristics to further increase the robustness of the estimates. Application of the proposed method to image denoising yields significant improvement over the previously reported regression methods and produces results comparable to the state-of the-art denoising techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像处理的非对称非单峰核回归
核回归之前已经被提出作为一种鲁棒估计器,用于广泛的图像处理任务,包括图像去噪、插值和超分辨率。在本文中,我们提出了一个核公式,放宽了通常的对称和单峰性质,以有效地利用自然图像的平滑特性。该方法沿着相似的图像特征扩展核支持,进一步提高了估计的鲁棒性。将所提出的方法应用于图像去噪,与先前报道的回归方法相比,产生了显著的改进,并产生了与最先进的去噪技术相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1