Low-Bit Quantization and Quantization-Aware Training for Small-Footprint Keyword Spotting

Yuriy Mishchenko, Yusuf Goren, Ming Sun, Chris Beauchene, Spyros Matsoukas, Oleg Rybakov, S. Vitaladevuni
{"title":"Low-Bit Quantization and Quantization-Aware Training for Small-Footprint Keyword Spotting","authors":"Yuriy Mishchenko, Yusuf Goren, Ming Sun, Chris Beauchene, Spyros Matsoukas, Oleg Rybakov, S. Vitaladevuni","doi":"10.1109/ICMLA.2019.00127","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate novel quantization approaches to reduce memory and computational footprint of deep neural network (DNN) based keyword spotters (KWS). We propose a new method for KWS offline and online quantization, which we call dynamic quantization, where we quantize DNN weight matrices column-wise, using each column's exact individual min-max range, and the DNN layers' inputs and outputs are quantized for every input audio frame individually, using the exact min-max range of each input and output vector. We further apply a new quantization-aware training approach that allows us to incorporate quantization errors into KWS model during training. Together, these approaches allow us to significantly improve the performance of KWS in 4-bit and 8-bit quantized precision, achieving the end-to-end accuracy close to that of full precision models while reducing the models' on-device memory footprint by up to 80%.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we investigate novel quantization approaches to reduce memory and computational footprint of deep neural network (DNN) based keyword spotters (KWS). We propose a new method for KWS offline and online quantization, which we call dynamic quantization, where we quantize DNN weight matrices column-wise, using each column's exact individual min-max range, and the DNN layers' inputs and outputs are quantized for every input audio frame individually, using the exact min-max range of each input and output vector. We further apply a new quantization-aware training approach that allows us to incorporate quantization errors into KWS model during training. Together, these approaches allow us to significantly improve the performance of KWS in 4-bit and 8-bit quantized precision, achieving the end-to-end accuracy close to that of full precision models while reducing the models' on-device memory footprint by up to 80%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小尺寸关键字识别的低比特量化和量化感知训练
在本文中,我们研究了新的量化方法来减少基于深度神经网络(DNN)的关键词定位器(KWS)的内存和计算足迹。我们提出了一种KWS离线和在线量化的新方法,我们称之为动态量化,其中我们按列量化DNN权重矩阵,使用每个列的精确单个最小-最大范围,并且DNN层的输入和输出分别量化每个输入音频帧,使用每个输入和输出向量的精确最小-最大范围。我们进一步应用了一种新的量化感知训练方法,该方法允许我们在训练期间将量化误差纳入KWS模型。总之,这些方法使我们能够显着提高KWS在4位和8位量化精度方面的性能,实现接近全精度模型的端到端精度,同时将模型的设备上内存占用减少高达80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Stenosis Classification of Carotid Artery Sonography using Deep Neural Networks Hybrid Condition Monitoring for Power Electronic Systems Time Series Anomaly Detection from a Markov Chain Perspective Anyone here? Smart Embedded Low-Resolution Omnidirectional Video Sensor to Measure Room Occupancy Deep Learning with Domain Randomization for Optimal Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1