On-line handwriting recognition using character bigram match vectors

A. El-Nasan, M. Perrone
{"title":"On-line handwriting recognition using character bigram match vectors","authors":"A. El-Nasan, M. Perrone","doi":"10.1109/IWFHR.2002.1030886","DOIUrl":null,"url":null,"abstract":"Describes an adaptive, partial-word-level, writer,dependent, handwriting recognition system that utilizes the character n-gram statistics of the English language. The system exploits the linguistic property that very few pairs of English words share exactly the same set of character bigrams. This property is used to bring linguistic context to the recognition stage. The recognition is based on, estimating the probability of bigram co-occurrences between words. Preliminary experiments using naive features and limited training sets show that the system can recognize over 60% of words it has never seen before in handwritten form. The system has only few trainable parameters. In addition, incremental training is computationally inexpensive.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Describes an adaptive, partial-word-level, writer,dependent, handwriting recognition system that utilizes the character n-gram statistics of the English language. The system exploits the linguistic property that very few pairs of English words share exactly the same set of character bigrams. This property is used to bring linguistic context to the recognition stage. The recognition is based on, estimating the probability of bigram co-occurrences between words. Preliminary experiments using naive features and limited training sets show that the system can recognize over 60% of words it has never seen before in handwritten form. The system has only few trainable parameters. In addition, incremental training is computationally inexpensive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线手写识别使用字符双字母匹配向量
描述了一种自适应的、部分单词级的、依赖于书写者的手写识别系统,该系统利用了英语语言的字符n-gram统计。该系统利用了语言特性,即很少有英语单词对共享完全相同的字符集。这一特性用于将语言语境带入识别阶段。该识别是基于估计单词之间双字共现的概率。使用朴素特征和有限训练集的初步实验表明,该系统可以识别超过60%以前从未见过的手写单词。该系统只有很少的可训练参数。此外,增量训练在计算上是廉价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1