{"title":"Design of an ultra-low power MFSK system in the presence of jamming","authors":"Yi Xiang, L. Milstein","doi":"10.1109/MILCOM52596.2021.9653041","DOIUrl":null,"url":null,"abstract":"We are interested in a communication system that operates in a jamming environment under stringent power constraints, but is flexible with bandwidth constraints. Our approach is to consider some of the key elements in a transceiver and optimize them for low power consumption. An obvious consequence of this is that high complexity components of the system, such as matched filters, forward error correction (FEC) that employs iterative decoders, coherent demodulators, and bandwidth-efficient modulation formats, are not feasible for this research. Rather, our system is designed using $M$-ary FSK with non-coherent detection and fast frequency hopping (FFH), optimized two-pole bandpass filters (BPF), and Reed-Solomon (RS) codes with hard-decision decoding. Among other things, we show that by properly optimizing the key parameters of the BPFs and RS codes, we can design the system to be significantly less complex than an optimal one, and only lose at most 1.4 dB in terms of performance in most cases, compared to the conventional matched filter receiver.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We are interested in a communication system that operates in a jamming environment under stringent power constraints, but is flexible with bandwidth constraints. Our approach is to consider some of the key elements in a transceiver and optimize them for low power consumption. An obvious consequence of this is that high complexity components of the system, such as matched filters, forward error correction (FEC) that employs iterative decoders, coherent demodulators, and bandwidth-efficient modulation formats, are not feasible for this research. Rather, our system is designed using $M$-ary FSK with non-coherent detection and fast frequency hopping (FFH), optimized two-pole bandpass filters (BPF), and Reed-Solomon (RS) codes with hard-decision decoding. Among other things, we show that by properly optimizing the key parameters of the BPFs and RS codes, we can design the system to be significantly less complex than an optimal one, and only lose at most 1.4 dB in terms of performance in most cases, compared to the conventional matched filter receiver.