Data sieving and collective I/O in ROMIO

R. Thakur, W. Gropp, W. Gropp, E. Lusk
{"title":"Data sieving and collective I/O in ROMIO","authors":"R. Thakur, W. Gropp, W. Gropp, E. Lusk","doi":"10.1109/FMPC.1999.750599","DOIUrl":null,"url":null,"abstract":"The I/O access patterns of parallel programs often consist of accesses to a large number of small, noncontiguous pieces of data. If an application's I/O needs are met by making many small, distinct I/O requests, however, the I/O performance degrades drastically. To avoid this problem, MPI-IO allows users to access a noncontiguous data set with a single I/O function call. This feature provides MPI-IO implementations an opportunity to optimize data access. We describe how our MPI-IO implementation, ROMIO, delivers high performance in the presence of noncontiguous requests. We explain in detail the two key optimizations ROMIO performs: data sieving for noncontiguous requests from one process and collective I/O for noncontiguous requests from multiple processes. We describe how one can implement these optimizations portably on multiple machines and file systems, control their memory requirements, and also achieve high performance. We demonstrate the performance and portability with performance results for three applications-an astrophysics-application template (DIST3D) the NAS BTIO benchmark, and an unstructured code (UNSTRUC)-on five different parallel machines: HP Exemplar IBM SP, Intel Paragon, NEC SX-4, and SGI Origin2000.","PeriodicalId":405655,"journal":{"name":"Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"542","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1999.750599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 542

Abstract

The I/O access patterns of parallel programs often consist of accesses to a large number of small, noncontiguous pieces of data. If an application's I/O needs are met by making many small, distinct I/O requests, however, the I/O performance degrades drastically. To avoid this problem, MPI-IO allows users to access a noncontiguous data set with a single I/O function call. This feature provides MPI-IO implementations an opportunity to optimize data access. We describe how our MPI-IO implementation, ROMIO, delivers high performance in the presence of noncontiguous requests. We explain in detail the two key optimizations ROMIO performs: data sieving for noncontiguous requests from one process and collective I/O for noncontiguous requests from multiple processes. We describe how one can implement these optimizations portably on multiple machines and file systems, control their memory requirements, and also achieve high performance. We demonstrate the performance and portability with performance results for three applications-an astrophysics-application template (DIST3D) the NAS BTIO benchmark, and an unstructured code (UNSTRUC)-on five different parallel machines: HP Exemplar IBM SP, Intel Paragon, NEC SX-4, and SGI Origin2000.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在romeo中数据筛选和集合I/O
并行程序的I/O访问模式通常包括对大量小的、不连续的数据块的访问。但是,如果通过发出许多小的、不同的I/O请求来满足应用程序的I/O需求,则I/O性能会急剧下降。为了避免这个问题,MPI-IO允许用户通过单个I/O函数调用访问不连续的数据集。该特性为MPI-IO实现提供了优化数据访问的机会。我们描述了我们的MPI-IO实现ROMIO如何在不连续请求存在的情况下提供高性能。我们详细解释了romeo执行的两个关键优化:针对来自一个进程的不连续请求的数据筛选,以及针对来自多个进程的不连续请求的集合I/O。我们描述了如何在多台机器和文件系统上可移植地实现这些优化,控制它们的内存需求,并实现高性能。我们用三个应用程序的性能结果来演示性能和可移植性——一个天体物理学应用程序模板(DIST3D)、NAS BTIO基准和一个非结构化代码(UNSTRUC)——在五个不同的并行机器上:HP Exemplar IBM SP、Intel Paragon、NEC SX-4和SGI Origin2000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Token space minimization by simulated annealing Fast parallel selection on the linear array with reconfigurable pipelined bus system Packing/unpacking information generation for efficient generalized kr/spl rarr/r and r/spl rarr/kr array redistribution Latency tolerant algorithms for WAN based workstation clusters New algorithms for efficient mining of association rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1