A multi-layer model for self-propelled disks interacting through alignment and volume exclusion

P. Degond, L. Navoret
{"title":"A multi-layer model for self-propelled disks interacting through alignment and volume exclusion","authors":"P. Degond, L. Navoret","doi":"10.1142/S021820251540014X","DOIUrl":null,"url":null,"abstract":"We present an individual-based model describing disk-like self-propelled particles moving inside parallel planes. The disk directions of motion follow alignment rules inside each layer. Additionally, the disks are subject to interactions with those of the neighboring layers arising from volume exclusion constraints. These interactions affect the disk inclinations with respect to the plane of motion. We formally de-rive a macroscopic model composed of planar Self-Organized Hydrodynamic (SOH) models describing the transport of mass and evolution of mean direction of motion of the disks in each plane, supplemented with transport equations for the mean disk inclination. These planar models are coupled due to the interactions with the neighboring planes. Numerical comparisons between the individual-based and macroscopic models are carried out. These models could be applicable, for instance, to describe sperm-cell collective dynamics.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S021820251540014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We present an individual-based model describing disk-like self-propelled particles moving inside parallel planes. The disk directions of motion follow alignment rules inside each layer. Additionally, the disks are subject to interactions with those of the neighboring layers arising from volume exclusion constraints. These interactions affect the disk inclinations with respect to the plane of motion. We formally de-rive a macroscopic model composed of planar Self-Organized Hydrodynamic (SOH) models describing the transport of mass and evolution of mean direction of motion of the disks in each plane, supplemented with transport equations for the mean disk inclination. These planar models are coupled due to the interactions with the neighboring planes. Numerical comparisons between the individual-based and macroscopic models are carried out. These models could be applicable, for instance, to describe sperm-cell collective dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对准和容积排除相互作用的自走盘多层模型
我们提出了一个基于个体的模型,描述在平行平面内移动的盘状自推进粒子。磁盘的运动方向遵循每一层内部的对齐规则。此外,由于体积排斥约束,磁盘受制于与相邻层的磁盘的相互作用。这些相互作用影响圆盘相对于运动平面的倾斜度。我们正式推导了一个由平面自组织流体力学(SOH)模型组成的宏观模型,该模型描述了质量的输运和圆盘在每个平面上的平均运动方向的演化,并补充了平均圆盘倾角的输运方程。由于与相邻平面的相互作用,这些平面模型是耦合的。对基于个体的模型和宏观模型进行了数值比较。例如,这些模型可以应用于描述精子细胞的集体动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reviving a failed network via microscopic interventions Instantaneous phase synchronization of two decoupled quantum limit-cycle oscillators induced by conditional photon detection Non-normality and non-monotonic dynamics in complex reaction networks Spontaneous Organizations of Diverse Network Structures in Coupled Logistic Maps with a Delayed Connection Change Dynamic stability of complex networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1