Deep Learning for Visual Cognition

Hiranmay Ghosh
{"title":"Deep Learning for Visual Cognition","authors":"Hiranmay Ghosh","doi":"10.1002/9781119527886.ch8","DOIUrl":null,"url":null,"abstract":"The reliance on machine learning in cognitive systems is further justified as it is not always possible to equip an intelligent agent with prior knowledge. In the modern times, the field of machine learning has been dominated by deep learning based on artificial neural networks. This chapter introduces deep learning for visual cognition. It starts with a brief introduction to deep neural networks (DNN) and some basic reusable configurations to realize various learning algorithms. The chapter discusses various modes of learning realized through DNN in some illustrative computer vision tasks. It presents a broad overview of the architecture of the networks and the principles involved. The chapter focuses on DNN‐based implementations of visual attention models, which is crucial for alleviating information overload in cognitive systems. It presents some research on synthesizing Bayesian reasoning with DNNs, aimed at improving the robustness of inferences. Finally, the chapter concludes with some salient observations on the topic.","PeriodicalId":314515,"journal":{"name":"Computational Models for Cognitive Vision","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Models for Cognitive Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119527886.ch8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The reliance on machine learning in cognitive systems is further justified as it is not always possible to equip an intelligent agent with prior knowledge. In the modern times, the field of machine learning has been dominated by deep learning based on artificial neural networks. This chapter introduces deep learning for visual cognition. It starts with a brief introduction to deep neural networks (DNN) and some basic reusable configurations to realize various learning algorithms. The chapter discusses various modes of learning realized through DNN in some illustrative computer vision tasks. It presents a broad overview of the architecture of the networks and the principles involved. The chapter focuses on DNN‐based implementations of visual attention models, which is crucial for alleviating information overload in cognitive systems. It presents some research on synthesizing Bayesian reasoning with DNNs, aimed at improving the robustness of inferences. Finally, the chapter concludes with some salient observations on the topic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉认知的深度学习
在认知系统中对机器学习的依赖是进一步合理的,因为并不总是有可能为智能代理配备先验知识。在现代,机器学习领域以基于人工神经网络的深度学习为主导。本章介绍了视觉认知领域的深度学习。首先简要介绍深度神经网络(DNN)和一些基本的可重用配置来实现各种学习算法。本章讨论了在一些说明性计算机视觉任务中通过深度神经网络实现的各种学习模式。它对网络的体系结构和所涉及的原则进行了广泛的概述。本章的重点是基于DNN的视觉注意模型的实现,这对于减轻认知系统中的信息过载至关重要。介绍了一些将贝叶斯推理与深度神经网络相结合的研究,旨在提高推理的鲁棒性。最后,本章总结了一些关于这个主题的重要观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Late Vision Applications of Visual Cognition Bayesian Reasoning for Perception and Cognition Conclusion Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1