Random-projection-based nonnegative least squares for hyperspectral image unmixing

V. Menon, Q. Du, J. Fowler
{"title":"Random-projection-based nonnegative least squares for hyperspectral image unmixing","authors":"V. Menon, Q. Du, J. Fowler","doi":"10.1109/WHISPERS.2016.8071796","DOIUrl":null,"url":null,"abstract":"Nonnegative least squares, a state-of-the-art approach to endmember abundance estimation in the hyperspectral-unmixing problem, is coupled with random projection employed for dimensionality reduction. Both Hadamard- and Gaussian-based projections are considered. Experimental results reveal that random projections can significantly reduce data volume without detrimentally affecting the accuracy of the abundance estimation, with the Hadamard-based approach slightly outperforming its Gaussian counterpart.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"156 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nonnegative least squares, a state-of-the-art approach to endmember abundance estimation in the hyperspectral-unmixing problem, is coupled with random projection employed for dimensionality reduction. Both Hadamard- and Gaussian-based projections are considered. Experimental results reveal that random projections can significantly reduce data volume without detrimentally affecting the accuracy of the abundance estimation, with the Hadamard-based approach slightly outperforming its Gaussian counterpart.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机投影的非负最小二乘高光谱图像解混
非负最小二乘是高光谱解混问题中最先进的端元丰度估计方法,它与用于降维的随机投影相结合。考虑了基于Hadamard和高斯的预测。实验结果表明,随机预测可以显著减少数据量,而不会对丰度估计的准确性产生不利影响,基于hadamard的方法略微优于高斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1