Interactive Dendritic Spine Analysis Based on 3D Morphological Features

Junyoung Choi, Sang-Eun Lee, Eunji Cho, Yutaro Kashiwagi, S. Okabe, Sunghoe Chang, W. Jeong
{"title":"Interactive Dendritic Spine Analysis Based on 3D Morphological Features","authors":"Junyoung Choi, Sang-Eun Lee, Eunji Cho, Yutaro Kashiwagi, S. Okabe, Sunghoe Chang, W. Jeong","doi":"10.1109/VISUAL.2019.8933795","DOIUrl":null,"url":null,"abstract":"Dendritic spines are submicron scale protrusions on neuronal dendrites that form the postsynaptic sites of excitatory neuronal inputs. The morphological changes of dendritic spines reflect alterations in physiological conditions and are further indicators of various neuropsychiatric conditions. However, due to the highly dynamic and heterogeneous nature of spines, accurate measurement and object analysis of spine morphology is a major challenge in neuroscience research. Here, we propose an interactive 3D dendritic spine analysis system that displays 3D rendering of spines and plots the high-dimensional features extracted from the 3D mesh of spines in three graph types (parallel coordinate plot, radar plot, and 2D scatter plot with t-Distributed Stochastic Neighbor Embedding). With this system, analysts can effectively explore and analyze the dendritic spine in a 3D manner with high-dimensional features. For the system, we have constructed a set of morphological high-dimensional features from the 3D mesh of dendritic spines.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Dendritic spines are submicron scale protrusions on neuronal dendrites that form the postsynaptic sites of excitatory neuronal inputs. The morphological changes of dendritic spines reflect alterations in physiological conditions and are further indicators of various neuropsychiatric conditions. However, due to the highly dynamic and heterogeneous nature of spines, accurate measurement and object analysis of spine morphology is a major challenge in neuroscience research. Here, we propose an interactive 3D dendritic spine analysis system that displays 3D rendering of spines and plots the high-dimensional features extracted from the 3D mesh of spines in three graph types (parallel coordinate plot, radar plot, and 2D scatter plot with t-Distributed Stochastic Neighbor Embedding). With this system, analysts can effectively explore and analyze the dendritic spine in a 3D manner with high-dimensional features. For the system, we have constructed a set of morphological high-dimensional features from the 3D mesh of dendritic spines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维形态特征的交互式树突脊柱分析
树突棘是神经元树突上的亚微米级突起,形成兴奋性神经元输入的突触后位点。树突棘的形态变化反映了生理条件的改变,是各种神经精神疾病的进一步指标。然而,由于脊柱的高度动态性和异质性,脊柱形态的精确测量和对象分析是神经科学研究的主要挑战。在这里,我们提出了一个交互式3D树突脊柱分析系统,该系统可以显示脊柱的3D渲染,并以三种图形类型(平行坐标图、雷达图和t分布随机邻居嵌入的2D散点图)绘制从脊柱的3D网格中提取的高维特征。利用该系统,分析人员可以有效地对具有高维特征的树突脊柱进行三维探索和分析。对于该系统,我们从树突棘的三维网格中构建了一组形态学高维特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EasyPZ.js: Interaction Binding for Pan and Zoom Visualizations Uncovering Data Landscapes through Data Reconnaissance and Task Wrangling Disentangled Representation of Data Distributions in Scatterplots RuleVis: Constructing Patterns and Rules for Rule-Based Models Interactive Bicluster Aggregation in Bipartite Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1