Performance analysis of convolutional neural networks for image classification with appropriate optimizers

Danish Sana, Ul Rahman Jamshaid, Haider Gulfam
{"title":"Performance analysis of convolutional neural networks for image classification with appropriate optimizers","authors":"Danish Sana, Ul Rahman Jamshaid, Haider Gulfam","doi":"10.26634/jmat.12.1.19398","DOIUrl":null,"url":null,"abstract":"Optimizers in Convolutional Neural Networks play an important role in many advanced deep learning models. Studies on advanced optimizers and modifications of existing optimizers continue to hold significant importance in the study of machine tools and algorithms. There are a number of studies to defend and the selection of these optimizers illustrate some of the challenges on the effectiveness of these optimizers. Comprehensive analysis on the optimizers and alteration with famous activation function Rectified Linear Unit (ReLU) offered to protect effectiveness. Significance is determined based on the adjustment with the original Softmax and ReLU. Experiments were performed with Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad) and Stochastic Gradient Descent (SGD) to examine the performance of Convolutional Neural Networks for image classification using the Canadian Institute for Advanced Research dataset (CIFAR-10).","PeriodicalId":297202,"journal":{"name":"i-manager’s Journal on Mathematics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager’s Journal on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jmat.12.1.19398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizers in Convolutional Neural Networks play an important role in many advanced deep learning models. Studies on advanced optimizers and modifications of existing optimizers continue to hold significant importance in the study of machine tools and algorithms. There are a number of studies to defend and the selection of these optimizers illustrate some of the challenges on the effectiveness of these optimizers. Comprehensive analysis on the optimizers and alteration with famous activation function Rectified Linear Unit (ReLU) offered to protect effectiveness. Significance is determined based on the adjustment with the original Softmax and ReLU. Experiments were performed with Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad) and Stochastic Gradient Descent (SGD) to examine the performance of Convolutional Neural Networks for image classification using the Canadian Institute for Advanced Research dataset (CIFAR-10).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络图像分类性能分析与适当的优化器
卷积神经网络中的优化器在许多高级深度学习模型中起着重要作用。对先进优化器和现有优化器的改进的研究在机床和算法的研究中仍然具有重要意义。有许多研究需要辩护,这些优化器的选择说明了这些优化器有效性的一些挑战。对优化器进行了综合分析,并对著名的激活函数整流线性单元(ReLU)进行了改造,以保证其有效性。通过与原始Softmax和ReLU的调整来确定意义。采用Adam、均方根传播(RMSprop)、自适应学习率方法(Adadelta)、自适应梯度算法(Adagrad)和随机梯度下降(SGD)进行实验,利用加拿大高级研究所数据集(CIFAR-10)检验卷积神经网络在图像分类中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Kolmogorov Complexity of Unitary Transformations in Quantum Computing NON-STEADY RADIAL FLOW OF A VISCOUS INCOMPRESSIBLE LIQUID IN THE POROUS MEDIUM AROUND A RADIALLY OSCILLATING SPHERICAL SURFACE SEMI MAXIMAL IDEALS OF BE-ALGEBRAS DYNAMICS OF DELAYED SIRS EPIDEMIC MODEL WITH A NON-LINEAR INCIDENCE RATE DISMANTLING OF MAGNETO-HYDRODYNAMIC MAXWELL EQUATION IN CYLINDRICAL CO-ORDINATES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1