Gait Recognition Using Flow Histogram Energy Image

Yazhou Yang, D. Tu, Guohui Li
{"title":"Gait Recognition Using Flow Histogram Energy Image","authors":"Yazhou Yang, D. Tu, Guohui Li","doi":"10.1109/ICPR.2014.85","DOIUrl":null,"url":null,"abstract":"Human gait is of essential importance for its wide use in biometric person-identification applications. In this work, we introduce a novel spatio-temporal gait representation, Flow Histogram Energy Image (FHEI), to characterize distinctive motion information of individual gait. We first extract the Histograms of Optical Flow (HOF) descriptors of each silhouette image of gait sequence, and construct an FHEI by averaging all the HOF features of a full gait cycle. We also propose a novel approach to generate two different synthetic gait templates. Real and synthetic gait templates are then fused to enhance the recognition accuracy of FHEI. We also adopt the Non-negative Matrix Factorization (NMF) to learn a part-based representation of FHEI templates. Extensive experiments conducted on the USF HumanID gait database indicate that the proposed FHEI approach achieves superior or comparable performance in comparison with a number of competitive gait recognition algorithms.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"160 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Human gait is of essential importance for its wide use in biometric person-identification applications. In this work, we introduce a novel spatio-temporal gait representation, Flow Histogram Energy Image (FHEI), to characterize distinctive motion information of individual gait. We first extract the Histograms of Optical Flow (HOF) descriptors of each silhouette image of gait sequence, and construct an FHEI by averaging all the HOF features of a full gait cycle. We also propose a novel approach to generate two different synthetic gait templates. Real and synthetic gait templates are then fused to enhance the recognition accuracy of FHEI. We also adopt the Non-negative Matrix Factorization (NMF) to learn a part-based representation of FHEI templates. Extensive experiments conducted on the USF HumanID gait database indicate that the proposed FHEI approach achieves superior or comparable performance in comparison with a number of competitive gait recognition algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流直方图能量图像的步态识别
人体步态在生物识别领域的广泛应用至关重要。在这项工作中,我们引入了一种新的时空步态表示——流直方图能量图像(FHEI),以表征个体步态的独特运动信息。首先提取步态序列剪影图像的光流直方图(HOF)描述符,并对整个步态周期的所有HOF特征进行平均,构建光流直方图。我们还提出了一种新的方法来生成两种不同的合成步态模板。然后融合真实和合成的步态模板,提高FHEI的识别精度。我们还采用非负矩阵分解(NMF)来学习基于零件的FHEI模板表示。在USF HumanID步态数据库上进行的大量实验表明,与许多竞争对手的步态识别算法相比,所提出的FHEI方法具有优越或相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1