{"title":"EMI Sensing for Underwater Metallic Targets Detection and Classification","authors":"F. Shubitidze, B. Barrowes, I. Shamatava","doi":"10.1109/OCEANSE.2019.8867057","DOIUrl":null,"url":null,"abstract":"Electromagnetic induction (EMI) sensing phenomenon are investigated for a conducting and multilayer environment to aid in underwater unexploded ordnance (UXO) detection and classification. The marine environment introduces complexities, such salinity gradient, sharp conductivity changes at air-water-sediment etc., which adversely can affect targets EMI signals and make underwater targets classification more difficult problem than classifying the same buried targets on land. The sensitivity of a secondary EMI signal with respect the water/air and/or water/sediment boundaries and temporal (diffusive EM field propagation speed) variability of EMI fields in an underwater (UW) environment are studied and demonstrated using the unconditionally stable Crank-Nicolson finite different time domain method (FDTD).","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic induction (EMI) sensing phenomenon are investigated for a conducting and multilayer environment to aid in underwater unexploded ordnance (UXO) detection and classification. The marine environment introduces complexities, such salinity gradient, sharp conductivity changes at air-water-sediment etc., which adversely can affect targets EMI signals and make underwater targets classification more difficult problem than classifying the same buried targets on land. The sensitivity of a secondary EMI signal with respect the water/air and/or water/sediment boundaries and temporal (diffusive EM field propagation speed) variability of EMI fields in an underwater (UW) environment are studied and demonstrated using the unconditionally stable Crank-Nicolson finite different time domain method (FDTD).