Vulnerability of Face Morphing Attacks: A Case Study on Lookalike and Identical Twins

Raghavendra Ramachandra, S. Venkatesh, Gaurav Jaswal, Guoqiang Li
{"title":"Vulnerability of Face Morphing Attacks: A Case Study on Lookalike and Identical Twins","authors":"Raghavendra Ramachandra, S. Venkatesh, Gaurav Jaswal, Guoqiang Li","doi":"10.1109/IWBF57495.2023.10157461","DOIUrl":null,"url":null,"abstract":"Face morphing attacks have emerged as a potential threat, particularly in automatic border control scenarios. Morphing attacks permit more than one individual to use travel documents that can be used to cross borders using automatic border control gates. The potential for morphing attacks depends on the selection of data subjects (accomplice and malicious actors). This work investigates lookalike and identical twins as the source of face morphing generation. We present a systematic study on benchmarking the vulnerability of Face Recognition Systems (FRS) to lookalike and identical twin morphing images. Therefore, we constructed new face morphing datasets using 16 pairs of identical twin and lookalike data subjects. Morphing images from lookalike and identical twins are generated using a landmark-based method. Extensive experiments are carried out to benchmark the attack potential of lookalike and identical twins. Furthermore, experiments are designed to provide insights into the impact of vulnerability with normal face morphing compared with lookalike and identical twin face morphing.","PeriodicalId":273412,"journal":{"name":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF57495.2023.10157461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face morphing attacks have emerged as a potential threat, particularly in automatic border control scenarios. Morphing attacks permit more than one individual to use travel documents that can be used to cross borders using automatic border control gates. The potential for morphing attacks depends on the selection of data subjects (accomplice and malicious actors). This work investigates lookalike and identical twins as the source of face morphing generation. We present a systematic study on benchmarking the vulnerability of Face Recognition Systems (FRS) to lookalike and identical twin morphing images. Therefore, we constructed new face morphing datasets using 16 pairs of identical twin and lookalike data subjects. Morphing images from lookalike and identical twins are generated using a landmark-based method. Extensive experiments are carried out to benchmark the attack potential of lookalike and identical twins. Furthermore, experiments are designed to provide insights into the impact of vulnerability with normal face morphing compared with lookalike and identical twin face morphing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面部变形攻击的脆弱性:以长得像和同卵双胞胎为例
面部变形攻击已成为潜在威胁,特别是在自动边境控制场景中。变形攻击允许不止一个人使用旅行证件,这些证件可以通过自动边境控制门越过边境。变形攻击的可能性取决于数据主体(同谋和恶意参与者)的选择。这项工作调查了长相相似和同卵双胞胎作为面部变形产生的来源。我们对人脸识别系统(FRS)对相似和相同的双胞胎变形图像的脆弱性进行了系统的基准测试研究。因此,我们使用16对同卵双胞胎和长相相似的数据主体构建了新的人脸变形数据集。使用基于地标的方法生成相似和同卵双胞胎的变形图像。大量的实验进行了基准的攻击潜力长得像和同卵双胞胎。此外,实验旨在提供对脆弱性的影响,正常面部变形,比较相似和同卵双胞胎面部变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on Diffusion Modelling For Sensor-based Human Activity Recognition Video superresolution in real forensic cases Exposing Deepfake Frames through Spectral Analysis of Color Channels in Frequency Domain Face Morphing Attack Detection with Denoising Diffusion Probabilistic Models Cross-Sensor Micro-Texture Material Classification and Smartphone Acquisition do not go well together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1