Evaluation of U-Net CNN Approaches for Human Neck MRI Segmentation

A. Suman, Yash Khemchandani, Md. Asikuzzaman, A. Webb, D. Perriman, M. Tahtali, M. Pickering
{"title":"Evaluation of U-Net CNN Approaches for Human Neck MRI Segmentation","authors":"A. Suman, Yash Khemchandani, Md. Asikuzzaman, A. Webb, D. Perriman, M. Tahtali, M. Pickering","doi":"10.1109/DICTA51227.2020.9363385","DOIUrl":null,"url":null,"abstract":"The segmentation of neck muscles is useful for the diagnoses and planning of medical interventions for neck pain-related conditions such as whiplash and cervical dystonia. Neck muscles are tightly grouped, have similar appearance to each other and display large anatomical variability between subjects. They also exhibit low contrast with background organs in magnetic resonance (MR) images. These characteristics make the segmentation of neck muscles a challenging task. Due to the significant success of the U-Net architecture for deep learning-based segmentation, numerous versions of this approach have emerged for the task of medical image segmentation. This paper presents an evaluation of 10 U-Net CNN approaches, 6 direct (U-Net, CRF-Unet, A-Unet, MFP-Unet, R2Unet and U-Net++) and 4 modified (R2A-Unet, R2A-Unet++, PMS-Unet and MS-Unet). The modifications are inspired by recent multi-scale and multi-stream techniques for deep learning algorithms. T1 weighted axial MR images of the neck, at the distal end of the C3 vertebrae, from 45 subjects with real-time data augmentation were used in our evaluation of neck muscle segmentation approaches. The analysis of our numerical results indicates that the R2Unet architecture achieves the best accuracy.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The segmentation of neck muscles is useful for the diagnoses and planning of medical interventions for neck pain-related conditions such as whiplash and cervical dystonia. Neck muscles are tightly grouped, have similar appearance to each other and display large anatomical variability between subjects. They also exhibit low contrast with background organs in magnetic resonance (MR) images. These characteristics make the segmentation of neck muscles a challenging task. Due to the significant success of the U-Net architecture for deep learning-based segmentation, numerous versions of this approach have emerged for the task of medical image segmentation. This paper presents an evaluation of 10 U-Net CNN approaches, 6 direct (U-Net, CRF-Unet, A-Unet, MFP-Unet, R2Unet and U-Net++) and 4 modified (R2A-Unet, R2A-Unet++, PMS-Unet and MS-Unet). The modifications are inspired by recent multi-scale and multi-stream techniques for deep learning algorithms. T1 weighted axial MR images of the neck, at the distal end of the C3 vertebrae, from 45 subjects with real-time data augmentation were used in our evaluation of neck muscle segmentation approaches. The analysis of our numerical results indicates that the R2Unet architecture achieves the best accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
U-Net CNN方法对人体颈部MRI分割的评价
颈部肌肉的分割是有用的诊断和计划的医疗干预颈部疼痛相关的条件,如鞭打和颈肌张力障碍。颈部肌肉紧密地聚集在一起,彼此具有相似的外观,并且在受试者之间显示出很大的解剖差异。在磁共振(MR)图像中,它们与背景器官的对比度也很低。这些特征使得颈部肌肉的分割成为一项具有挑战性的任务。由于U-Net架构在基于深度学习的分割方面取得了重大成功,因此出现了许多版本的该方法用于医学图像分割任务。本文对10种U-Net CNN方法进行了评价,其中6种是直接的(U-Net、CRF-Unet、A-Unet、MFP-Unet、R2Unet和U-Net++), 4种是改进的(R2A-Unet、R2A-Unet++、PMS-Unet和MS-Unet)。这些修改受到了最近深度学习算法的多尺度和多流技术的启发。我们使用45名受试者C3椎体远端颈部T1加权轴向MR图像进行实时数据增强,以评估颈部肌肉分割方法。数值结果分析表明,R2Unet架构达到了最好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pixel-RRT*: A Novel Skeleton Trajectory Search Algorithm for Hepatic Vessels M2-Net: A Multi-scale Multi-level Feature Enhanced Network for Object Detection in Optical Remote Sensing Images Using Environmental Context to Synthesis Missing Pixels Automatic Assessment of Open Street Maps Database Quality using Aerial Imagery Temporal 3D RetinaNet for fish detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1