A non-causal approach for suppressing the estimation delay of state observer

Kentaro Tsurumoto, W. Ohnishi, T. Koseki, Nard Strijbosch, T. Oomen
{"title":"A non-causal approach for suppressing the estimation delay of state observer","authors":"Kentaro Tsurumoto, W. Ohnishi, T. Koseki, Nard Strijbosch, T. Oomen","doi":"10.23919/ACC53348.2022.9867394","DOIUrl":null,"url":null,"abstract":"State estimation is essential for tracking conditions which can not be directly measured by sensors, or are too noisy. The aim of this poster is to present an approach to mitigate the phase delay without compromising the noise sensitivity, by using accessible future data. Such use of future data can be possible in cases like Iterative Learning Control, where full data of the previous trial is acquired beforehand. The effectiveness of the presented approach is verified through a motion system experiment, successfully showing the state estimation improvement in time domain. The presented non-causal approach improves the trade-offs between the phase delay of the estimation and the noise sensitivity of the state observer.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State estimation is essential for tracking conditions which can not be directly measured by sensors, or are too noisy. The aim of this poster is to present an approach to mitigate the phase delay without compromising the noise sensitivity, by using accessible future data. Such use of future data can be possible in cases like Iterative Learning Control, where full data of the previous trial is acquired beforehand. The effectiveness of the presented approach is verified through a motion system experiment, successfully showing the state estimation improvement in time domain. The presented non-causal approach improves the trade-offs between the phase delay of the estimation and the noise sensitivity of the state observer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种抑制状态观测器估计延迟的非因果方法
对于传感器无法直接测量或噪声过大的跟踪条件,状态估计是至关重要的。这张海报的目的是通过使用可访问的未来数据,提出一种在不影响噪声灵敏度的情况下减轻相位延迟的方法。在迭代学习控制(Iterative Learning Control)等情况下,这种对未来数据的使用是可能的,在这种情况下,先前试验的全部数据是预先获得的。通过运动系统实验验证了该方法的有效性,成功地展示了在时域上状态估计的改进。提出的非因果方法改善了估计的相位延迟和状态观测器的噪声灵敏度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1