Automated Coverage-Driven Test Data Generation Using Dynamic Symbolic Execution

Ting Su, G. Pu, Bin Fang, Jifeng He, Jun Yan, Siyuan Jiang, Jianjun Zhao
{"title":"Automated Coverage-Driven Test Data Generation Using Dynamic Symbolic Execution","authors":"Ting Su, G. Pu, Bin Fang, Jifeng He, Jun Yan, Siyuan Jiang, Jianjun Zhao","doi":"10.1109/SERE.2014.23","DOIUrl":null,"url":null,"abstract":"Recently code transformations or tailored fitness functions are adopted to achieve coverage (structural or logical criterion) driven testing to ensure software reliability. However, some internal threats like negative impacts on underlying search strategies or local maximum exist. So we propose a dynamic symbolic execution (DSE) based framework combined with a path filtering algorithm and a new heuristic path search strategy, i.e., predictive path search, to achieve faster coverage-driven testing with lower testing cost. The empirical experiments (three open source projects and two industrial projects) show that our approach is effective and efficient. For the open source projects w.r.t branch coverage, our approach in average reduces 25.5% generated test cases and 36.3% solved constraints than the traditional DSE-based approach without path filtering. And the presented heuristic strategy, on the same testing budget, improves the branch coverage by 26.4% and 35.4% than some novel search strategies adopted in KLEE and CREST.","PeriodicalId":248957,"journal":{"name":"2014 Eighth International Conference on Software Security and Reliability","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Software Security and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Recently code transformations or tailored fitness functions are adopted to achieve coverage (structural or logical criterion) driven testing to ensure software reliability. However, some internal threats like negative impacts on underlying search strategies or local maximum exist. So we propose a dynamic symbolic execution (DSE) based framework combined with a path filtering algorithm and a new heuristic path search strategy, i.e., predictive path search, to achieve faster coverage-driven testing with lower testing cost. The empirical experiments (three open source projects and two industrial projects) show that our approach is effective and efficient. For the open source projects w.r.t branch coverage, our approach in average reduces 25.5% generated test cases and 36.3% solved constraints than the traditional DSE-based approach without path filtering. And the presented heuristic strategy, on the same testing budget, improves the branch coverage by 26.4% and 35.4% than some novel search strategies adopted in KLEE and CREST.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用动态符号执行自动生成覆盖驱动的测试数据
最近,采用代码转换或定制的适应度函数来实现覆盖(结构或逻辑标准)驱动的测试,以确保软件的可靠性。然而,存在一些内部威胁,如对底层搜索策略的负面影响或局部最大值。因此,我们提出了一种基于动态符号执行(DSE)的框架,结合路径过滤算法和一种新的启发式路径搜索策略,即预测路径搜索,以实现更快的覆盖驱动测试和更低的测试成本。实证实验(三个开源项目和两个工业项目)表明我们的方法是有效和高效的。对于开放源码项目的w.r.t分支覆盖,我们的方法平均减少了25.5%生成的测试用例和36.3%解决的约束,而不是传统的没有路径过滤的基于sse的方法。在相同的测试预算下,所提出的启发式策略比KLEE和CREST中采用的新搜索策略分别提高了26.4%和35.4%的分支覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Java Card Operating System Fast Discovery of VM-Sensitive Divergence Points with Basic Block Comparison Traceability-Based Formal Specification Inspection SeTGaM: Generalized Technique for Regression Testing Based on UML/OCL Models Game-Theoretic Strategy Analysis for Data Reliability Management in Cloud Storage Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1