Behavior enhanced deep bot detection in social media

C. Cai, Linjing Li, D. Zeng
{"title":"Behavior enhanced deep bot detection in social media","authors":"C. Cai, Linjing Li, D. Zeng","doi":"10.1109/ISI.2017.8004887","DOIUrl":null,"url":null,"abstract":"Social bots are regarded as the most common kind of malwares in social platform. They can produce fake messages, spread rumours, and even manipulate public opinions. Recently, massive social bots are created and widely spread in social platform, they bring negative effects to public and netizen security. Bot detection aims to distinguish bots from human and it catches more and more attentions in recent years. In this paper, we propose a behavior enhanced deep model (BeDM) for bot detection. The proposed model regards user content as temporal text data instead of plain text to extract latent temporal patterns. Moreover, BeDM fuses content information and behavior information using deep learning method. To the best of our knowledge, this is the first trial that applies deep neural network in bot detection. Experiments on real world dataset collected from Twitter also demonstrate the effectiveness of our proposed model.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

Social bots are regarded as the most common kind of malwares in social platform. They can produce fake messages, spread rumours, and even manipulate public opinions. Recently, massive social bots are created and widely spread in social platform, they bring negative effects to public and netizen security. Bot detection aims to distinguish bots from human and it catches more and more attentions in recent years. In this paper, we propose a behavior enhanced deep model (BeDM) for bot detection. The proposed model regards user content as temporal text data instead of plain text to extract latent temporal patterns. Moreover, BeDM fuses content information and behavior information using deep learning method. To the best of our knowledge, this is the first trial that applies deep neural network in bot detection. Experiments on real world dataset collected from Twitter also demonstrate the effectiveness of our proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行为增强了社交媒体中的深度机器人检测
社交机器人被认为是社交平台上最常见的一种恶意软件。他们可以制造虚假信息,传播谣言,甚至操纵公众舆论。最近,大量社交机器人在社交平台上被创造和广泛传播,它们给公众和网民的安全带来了负面影响。机器人检测旨在将机器人与人类区分开来,近年来受到越来越多的关注。本文提出了一种用于机器人检测的行为增强深度模型(BeDM)。该模型将用户内容视为时间文本数据,而不是纯文本,以提取潜在的时间模式。此外,BeDM采用深度学习方法融合内容信息和行为信息。据我们所知,这是第一次将深度神经网络应用于机器人检测的试验。从Twitter收集的真实世界数据集的实验也证明了我们提出的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The dynamics of health sentiments with competitive interactions in social media Phishing detection: A recent intelligent machine learning comparison based on models content and features A framework for digital forensics analysis based on semantic role labeling Alignment-free indexing-first-one hashing with bloom filter integration Assessing medical device vulnerabilities on the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1