Dimitrios Ziakkas, Anastasios Plioutsias, K. Pechlivanis
{"title":"Artificial Intelligence in aviation decision making process.The transition from extended Minimum Crew Operations to Single Pilot Operations (SiPO)","authors":"Dimitrios Ziakkas, Anastasios Plioutsias, K. Pechlivanis","doi":"10.54941/ahfe1001452","DOIUrl":null,"url":null,"abstract":"Innovation, management of change, and human factors implementation in-flight operations portray the aviation industry. The International Air Transportation Authority (IATA) Technology Roadmap (IATA, 2019) and European Aviation Safety Agency (EASA) Artificial Intelligence (A.I.) roadmap propose an outline and assessment of ongoing technology prospects, which change the aviation environment with the implementation of A.I. and introduction of extended Minimum Crew Operations (eMCO) and Single Pilot Operations (SiPO). Changes in the workload will affect human performance and the decision-making process. The research accepted the universally established definition in the A.I. approach of “any technology that appears to emulate the performance of a human” (EASA, 2020). A review of the existing literature on Direct Voice Inputs (DVI) applications structured A.I. aviation decision-making research themes in cockpit design and users’ perception - experience. Interviews with Subject Matter Experts (Human Factors analysts, A.I. analysts, airline managers, examiners, instructors, qualified pilots, pilots under training) and questionnaires (disseminated to a group of professional pilots and pilots under training) examined A.I. implementation in cockpit design and operations. Results were analyzed and evaluated the suitability and significant differences of e-MCO and SiPO under the decision-making aspect.Keywords: Artificial Intelligence (A.I.), Extended Minimum Crew Operations (e-MCO), Single Pilot Operations (SiPO), cockpit design, ergonomics, decision making.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1001452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Innovation, management of change, and human factors implementation in-flight operations portray the aviation industry. The International Air Transportation Authority (IATA) Technology Roadmap (IATA, 2019) and European Aviation Safety Agency (EASA) Artificial Intelligence (A.I.) roadmap propose an outline and assessment of ongoing technology prospects, which change the aviation environment with the implementation of A.I. and introduction of extended Minimum Crew Operations (eMCO) and Single Pilot Operations (SiPO). Changes in the workload will affect human performance and the decision-making process. The research accepted the universally established definition in the A.I. approach of “any technology that appears to emulate the performance of a human” (EASA, 2020). A review of the existing literature on Direct Voice Inputs (DVI) applications structured A.I. aviation decision-making research themes in cockpit design and users’ perception - experience. Interviews with Subject Matter Experts (Human Factors analysts, A.I. analysts, airline managers, examiners, instructors, qualified pilots, pilots under training) and questionnaires (disseminated to a group of professional pilots and pilots under training) examined A.I. implementation in cockpit design and operations. Results were analyzed and evaluated the suitability and significant differences of e-MCO and SiPO under the decision-making aspect.Keywords: Artificial Intelligence (A.I.), Extended Minimum Crew Operations (e-MCO), Single Pilot Operations (SiPO), cockpit design, ergonomics, decision making.