Prediction β-hairpin motifs in enzyme protein using three methods

Haixia Long, Xiuzhen Hu
{"title":"Prediction β-hairpin motifs in enzyme protein using three methods","authors":"Haixia Long, Xiuzhen Hu","doi":"10.1109/ICNC.2012.6234521","DOIUrl":null,"url":null,"abstract":"The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用三种方法预测酶蛋白β-发夹基序
本文采用了矩阵评分算法、多样性增量算法和随机森林算法。它们被用来预测ArchDB-EC和ArchDB40数据集中的β-发夹基序。在ArchDB-EC数据集中,我们获得的准确率分别为68.5%、79.8%和84.3%。马修相关系数分别为0.17、0.61和0.63。在ArchDB40数据集上使用相同的三种方法,我们得到的准确率和马修相关系数分别为67.9%和0.39、75.2%和0.51、83.5%和0.60。实验表明,随机森林算法对β-发夹图案的预测效果最好,在ArchDB40数据集上的预测结果优于以往的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The model about the affection regulation based on partial least regression in the Human-computer interaction HSAQEA based reliability redundancy optimization for complex system Static error correction of the sensor based on SVR Hybrid flexible neural tree for exchange rates forecasting Some comparison on whole-proteome phylogeny of large dsDNA viruses based on dynamical language approach and feature frequency profiles method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1