Vector-Valued Kernel Ridge Regression for the Modeling of High-Speed Links

N. Soleimani, R. Trinchero, F. Canavero
{"title":"Vector-Valued Kernel Ridge Regression for the Modeling of High-Speed Links","authors":"N. Soleimani, R. Trinchero, F. Canavero","doi":"10.1109/NEMO51452.2022.10038963","DOIUrl":null,"url":null,"abstract":"This paper presents a preliminary implementation of a general modeling framework for vector-valued functions based on a multi-output kernel Ridge regression (KRR). The proposed approach is based on a generalized definition of the reproducing kernel Hilbert space (RKHS) to the case of vector-valued functions, thus bridging the gap between multi-output Neural Network (NN) structures and standard scalar kernel-based approaches. The above concept is then used within the KRR to train a multi-output surrogate model able to predict the frequency responses of a high-speed link affected by four parameters with a large variability. The performance of the proposed approach, in terms of parametric and stochastic analysis, is compared with the one provided by two state-of-the-art techniques, such as the combination of the principal components analysis (PCA) and the least-squares support vector machine (LS-SVM) regression and a multi-output feed-forward NN structure.","PeriodicalId":102131,"journal":{"name":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO51452.2022.10038963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a preliminary implementation of a general modeling framework for vector-valued functions based on a multi-output kernel Ridge regression (KRR). The proposed approach is based on a generalized definition of the reproducing kernel Hilbert space (RKHS) to the case of vector-valued functions, thus bridging the gap between multi-output Neural Network (NN) structures and standard scalar kernel-based approaches. The above concept is then used within the KRR to train a multi-output surrogate model able to predict the frequency responses of a high-speed link affected by four parameters with a large variability. The performance of the proposed approach, in terms of parametric and stochastic analysis, is compared with the one provided by two state-of-the-art techniques, such as the combination of the principal components analysis (PCA) and the least-squares support vector machine (LS-SVM) regression and a multi-output feed-forward NN structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速链路建模的向量值核岭回归
本文提出了一个基于多输出核岭回归(KRR)的向量值函数通用建模框架的初步实现。该方法基于对向量值函数的再现核希尔伯特空间(RKHS)的广义定义,从而弥补了多输出神经网络(NN)结构与基于标准标量核的方法之间的差距。然后在KRR中使用上述概念来训练一个多输出代理模型,该模型能够预测受四个具有大变变性的参数影响的高速链路的频率响应。该方法在参数分析和随机分析方面的性能与两种最先进的技术(如主成分分析(PCA)和最小二乘支持向量机(LS-SVM)回归的组合以及多输出前馈神经网络结构)所提供的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EM and Thermo-Mechanical Analysis and Design of a Compact-RFQ RF filter design using Deep Learning and Artificial Intelligence A subcell FDTD Scheme implementation for thin slot modeling Transmission Zeros in Rectangular Waveguide Filters: A Novel Approach for Generating the Source-to-Load Coupling Investigation of conformal Mappings for the Approximation of Faber Polynomial based Propagators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1