Network Traffic Analysis for DDOS Attack Detection

Atheer Alharthi, A. Eshmawi, Azzah Kabbas, L. Hsairi
{"title":"Network Traffic Analysis for DDOS Attack Detection","authors":"Atheer Alharthi, A. Eshmawi, Azzah Kabbas, L. Hsairi","doi":"10.1145/3440749.3442637","DOIUrl":null,"url":null,"abstract":"Distributed Denial of Service attacks (DDoS) are one of the most prevalent attacks threatening systems and their security. In this paper, various models to categorize these attacks are presented, analyzed and compared on regards of their effectiveness for DDoS detection. Machine learning (ML) algorithms for classification are used after pre-processing DDoS dataset to classify network traffic. After analyzing the results of Naïve bayes, Decision Tree, Support Vector Machine, and Random Forest classifiers, we conclude that the most accurate results appeared when using the Random Forest classifier.","PeriodicalId":344578,"journal":{"name":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440749.3442637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed Denial of Service attacks (DDoS) are one of the most prevalent attacks threatening systems and their security. In this paper, various models to categorize these attacks are presented, analyzed and compared on regards of their effectiveness for DDoS detection. Machine learning (ML) algorithms for classification are used after pre-processing DDoS dataset to classify network traffic. After analyzing the results of Naïve bayes, Decision Tree, Support Vector Machine, and Random Forest classifiers, we conclude that the most accurate results appeared when using the Random Forest classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于DDOS攻击检测的网络流量分析
分布式拒绝服务攻击(DDoS)是威胁系统及其安全的最常见的攻击之一。本文提出了对这些攻击进行分类的各种模型,并对它们在DDoS检测方面的有效性进行了分析和比较。在对DDoS数据集进行预处理后,使用机器学习(ML)算法对网络流量进行分类。在分析Naïve贝叶斯、决策树、支持向量机和随机森林分类器的结果后,我们得出结论,使用随机森林分类器时出现的结果最准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lifetime Enhancement of WSN Based on Improved LEACH with Cluster Head Alternative Gateway Multiple Level Action Embedding for Penetration Testing Polygons characterizing the joint statistical properties of the input and output sequences of the binary shift register Methodology for testing LPWAN networks with mesh topology Applying Multidimensional Scaling Method to Determine Spatial Coordinates of WSN Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1