{"title":"Efficient hardware implementation of data-flow parallel embedded systems","authors":"P. Quinton, Anne-Marie Chana, Steven Derrien","doi":"10.1109/SAMOS.2012.6404202","DOIUrl":null,"url":null,"abstract":"Many modern computing systems deal with streams of data, which have to be processed in parallel in order to be handled in real-time. This is in particular the case for some kind of cyber physical systems, which process data provided by physical devices. We consider here an approach to generate efficient hardware for-a particular class of-such systems, which relies upon the polyhedral model. Flexible parallel components, described by the Alpha functional language, are modelled and assembled using a scheduling method which combines the synchronous data-flow principle of balance equations, and the polyhedral scheduling technique. The modelling of flexible components relies on a simple, affine-periodic, delayable and stretchable time model, which allows a full system to be assembled and synthesized by combining the component hardware descriptions with automatically generated wrappers. We illustrate this method on a simplified WCDMA system and we discuss the relationship of this approach with stream languages, latency-insensitive design, and multidimensional data-flow systems.","PeriodicalId":130275,"journal":{"name":"2012 International Conference on Embedded Computer Systems (SAMOS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Embedded Computer Systems (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2012.6404202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Many modern computing systems deal with streams of data, which have to be processed in parallel in order to be handled in real-time. This is in particular the case for some kind of cyber physical systems, which process data provided by physical devices. We consider here an approach to generate efficient hardware for-a particular class of-such systems, which relies upon the polyhedral model. Flexible parallel components, described by the Alpha functional language, are modelled and assembled using a scheduling method which combines the synchronous data-flow principle of balance equations, and the polyhedral scheduling technique. The modelling of flexible components relies on a simple, affine-periodic, delayable and stretchable time model, which allows a full system to be assembled and synthesized by combining the component hardware descriptions with automatically generated wrappers. We illustrate this method on a simplified WCDMA system and we discuss the relationship of this approach with stream languages, latency-insensitive design, and multidimensional data-flow systems.