{"title":"Thermally-assisted transient analysis for reducing the response time of microhotplate gas sensors","authors":"A. Vergara, K. Benkstein, S. Semancik","doi":"10.1109/ICSENS.2013.6688156","DOIUrl":null,"url":null,"abstract":"This study examines methods for decreasing the response time of chemiresistive, metal oxide microhotplate gas sensors. We describe a successful approach that employs an innovative pulsed-temperature operation methodology for increasing the speeds at which analytes may be recognized. By implementing the suggested strategy, we obtain, in a data-driven fashion, insights into the transduction mechanisms of nanostructured sensing-films that may ultimately guide the selection of modulating frequencies that optimally reduce the sensor-analyte response time while preserving its high discrimination and quantification performance.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study examines methods for decreasing the response time of chemiresistive, metal oxide microhotplate gas sensors. We describe a successful approach that employs an innovative pulsed-temperature operation methodology for increasing the speeds at which analytes may be recognized. By implementing the suggested strategy, we obtain, in a data-driven fashion, insights into the transduction mechanisms of nanostructured sensing-films that may ultimately guide the selection of modulating frequencies that optimally reduce the sensor-analyte response time while preserving its high discrimination and quantification performance.