Study on Anomaly Detection Technique in an Industrial Control System Based on Machine Learning

Janghoon Kim, Hyunpyo Choi, Jiho Shin, Jung-Taek Seo
{"title":"Study on Anomaly Detection Technique in an Industrial Control System Based on Machine Learning","authors":"Janghoon Kim, Hyunpyo Choi, Jiho Shin, Jung-Taek Seo","doi":"10.1145/3440943.3444743","DOIUrl":null,"url":null,"abstract":"This study proposed an anomaly detection technique in an industrial control system using supervised and unsupervised machine learning algorithms. For the dataset for learning, the HIL-based Augmented ICS (HAI) dataset provided for the study on security in industrial control systems was used. For the learning model, Light Gradient Boosted Machine -- a supervised learning algorithm and One-Class Support Vector Machine and Isolation Forest as unsupervised learning algorithms were employed. The proposed technique is presented in this paper, which is organized as follows: Feature selection, Data preprocessing, Hyperparameter optimization and verification, and Experiment and analysis of results. The performance difference according to the algorithm and model configuration was exhibited through the experimental results. In addition, issues to be considered in model configuration and future study directions for anomaly detection techniques in industrial control systems were presented based on the experimental results.","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study proposed an anomaly detection technique in an industrial control system using supervised and unsupervised machine learning algorithms. For the dataset for learning, the HIL-based Augmented ICS (HAI) dataset provided for the study on security in industrial control systems was used. For the learning model, Light Gradient Boosted Machine -- a supervised learning algorithm and One-Class Support Vector Machine and Isolation Forest as unsupervised learning algorithms were employed. The proposed technique is presented in this paper, which is organized as follows: Feature selection, Data preprocessing, Hyperparameter optimization and verification, and Experiment and analysis of results. The performance difference according to the algorithm and model configuration was exhibited through the experimental results. In addition, issues to be considered in model configuration and future study directions for anomaly detection techniques in industrial control systems were presented based on the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的工业控制系统异常检测技术研究
本研究提出了一种基于监督和无监督机器学习算法的工业控制系统异常检测技术。用于学习的数据集,使用了基于hil的增强ICS (HAI)数据集,该数据集是为工业控制系统安全研究提供的。学习模型采用有监督学习算法Light Gradient boosting Machine和无监督学习算法One-Class Support Vector Machine和Isolation Forest。本文主要从特征选择、数据预处理、超参数优化与验证、实验与结果分析四个方面进行了介绍。实验结果显示了不同算法和模型配置的性能差异。此外,根据实验结果,提出了模型配置中需要考虑的问题和工业控制系统异常检测技术的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing Approach for Improving the Recognition of Cluster-like Spheroidized Carbides XGBoost based Packer Identification study using Entry point Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication A Classification method of Fake News based on Ensemble Learning Intelligent Controlling System in Aquaculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1