Generative Adversarial Networks for Respiratory Sound Augmentation

Kirill Kochetov, A. Filchenkov
{"title":"Generative Adversarial Networks for Respiratory Sound Augmentation","authors":"Kirill Kochetov, A. Filchenkov","doi":"10.1145/3437802.3437821","DOIUrl":null,"url":null,"abstract":"In this paper we propose to use generative adversarial network (GAN) for respiratory sound data augmentation. We present a GAN based approach that requires moderate amount of time and computing resources and capable to greatly increase performance of lung sound classification tasks. We also present a conditioned version of GAN, which is flexible and outperforms competitor augmentation methods. As a result, the GAN based augmentation method is able to boost RNN classifier performance by 10-15","PeriodicalId":429866,"journal":{"name":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437802.3437821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose to use generative adversarial network (GAN) for respiratory sound data augmentation. We present a GAN based approach that requires moderate amount of time and computing resources and capable to greatly increase performance of lung sound classification tasks. We also present a conditioned version of GAN, which is flexible and outperforms competitor augmentation methods. As a result, the GAN based augmentation method is able to boost RNN classifier performance by 10-15
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
呼吸声增强的生成对抗网络
在本文中,我们提出使用生成对抗网络(GAN)进行呼吸声数据增强。我们提出了一种基于GAN的方法,该方法需要适度的时间和计算资源,并且能够大大提高肺音分类任务的性能。我们还提出了一种条件版本的GAN,它是灵活的,优于竞争对手的增强方法。结果表明,基于GAN的增强方法能够将RNN分类器的性能提高10- 15%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adversarial DGA Domain Examples Generation and Detection Numerical Estimation of Network Traffic Failure Based on Probabilistic Approximation Methods: To what extent the network traffic failure can be predicted? Robot teaching assistant and physical programming class for programming education of young children An improved text classification method based on convolutional neural networks Text Classification Method with Combination of Fuzzy Relation and Feature Distribution Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1