Introduction of Fractal Dimension Feature and Reduction of Calculation Amount in Person Authentication Using Evoked EEG by Ultrasound

Kotaro Mukai, I. Nakanishi
{"title":"Introduction of Fractal Dimension Feature and Reduction of Calculation Amount in Person Authentication Using Evoked EEG by Ultrasound","authors":"Kotaro Mukai, I. Nakanishi","doi":"10.1109/TENCON50793.2020.9293921","DOIUrl":null,"url":null,"abstract":"The aim of this study is to authenticate individuals using an electroencephalogram (EEG) evoked by a stimulus. EEGs are highly confidential and enable continuous authentication during the use of or access to the given information or service. However, perceivable stimulation distracts the users from the activity they are carrying out while using the service. Therefore, ultrasound stimuli were chosen for EEG evocation. In our previous study, an Equal Error Rate (EER) of 0 % was achieved; however, there were some features which had not been evaluated. In this paper, we introduce a new type of feature, namely fractal dimension, as a nonlinear feature, and evaluate its verification performance on its own and in combination with other conventional features. As a result, an EER of 0 % was achieved when using five features and 14 electrodes, which accounted for 70 support vector machine (SVM) models. However, the construction of the 70 SVM models required extensive calculations. Thus, we reduced the number of SVM models to 24 while maintaining an EER = 0 %.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of this study is to authenticate individuals using an electroencephalogram (EEG) evoked by a stimulus. EEGs are highly confidential and enable continuous authentication during the use of or access to the given information or service. However, perceivable stimulation distracts the users from the activity they are carrying out while using the service. Therefore, ultrasound stimuli were chosen for EEG evocation. In our previous study, an Equal Error Rate (EER) of 0 % was achieved; however, there were some features which had not been evaluated. In this paper, we introduce a new type of feature, namely fractal dimension, as a nonlinear feature, and evaluate its verification performance on its own and in combination with other conventional features. As a result, an EER of 0 % was achieved when using five features and 14 electrodes, which accounted for 70 support vector machine (SVM) models. However, the construction of the 70 SVM models required extensive calculations. Thus, we reduced the number of SVM models to 24 while maintaining an EER = 0 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引入分形维数特征及减少超声诱发脑电图身份验证计算量
本研究的目的是利用刺激引起的脑电图(EEG)来验证个体。eeg是高度机密的,并且在使用或访问给定信息或服务期间允许持续身份验证。然而,可感知的刺激分散了用户在使用服务时正在进行的活动。因此,采用超声刺激诱发脑电图。在我们之前的研究中,实现了0%的相等错误率(EER);然而,还有一些特征没有被评估。本文引入了一种新的特征——分形维数作为一种非线性特征,并对其单独和与其他常规特征相结合的验证性能进行了评价。结果表明,当使用5个特征和14个电极,即70个支持向量机(SVM)模型时,EER为0%。然而,70个支持向量机模型的构建需要大量的计算。因此,我们将SVM模型的数量减少到24个,同时保持EER = 0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1