A cloud-supported cps approach to control decision of process manufacturing: 3D ONoC

Zhaolong Ning, Weigang Hou, Xiping Hu, Xiaoxue Gong
{"title":"A cloud-supported cps approach to control decision of process manufacturing: 3D ONoC","authors":"Zhaolong Ning, Weigang Hou, Xiping Hu, Xiaoxue Gong","doi":"10.1109/COASE.2017.8256147","DOIUrl":null,"url":null,"abstract":"The Cyber-Physical System (CPS) concept is now attracting attention in systems engineering, and it is being applied to a fully automated factory control in processes such as semiconductor fabrication. In this paper, we propose a novel control decision structure for process manufacturing, designated as the 3D Optical Network-on-Chip (ONoC) multi-core system, based on the cloud-supported CPS concept. We first construct a task graph — which includes interconnected Virtual Machines (VMs)—to represent the interaction between industrial-physical processes and cyber states. Given the task graph, the control decision process becomes into the problem of the on-chip VM placement. We then design a highly reliable on-chip VM placement scheduling to find the optimal control strategy while guaranteeing the reliability of the 3D ONoC structure. The simulation results demonstrate that our scheme achieves a higher reliability of the 3D ONoC structure when we make the control decision for process manufacturing.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Cyber-Physical System (CPS) concept is now attracting attention in systems engineering, and it is being applied to a fully automated factory control in processes such as semiconductor fabrication. In this paper, we propose a novel control decision structure for process manufacturing, designated as the 3D Optical Network-on-Chip (ONoC) multi-core system, based on the cloud-supported CPS concept. We first construct a task graph — which includes interconnected Virtual Machines (VMs)—to represent the interaction between industrial-physical processes and cyber states. Given the task graph, the control decision process becomes into the problem of the on-chip VM placement. We then design a highly reliable on-chip VM placement scheduling to find the optimal control strategy while guaranteeing the reliability of the 3D ONoC structure. The simulation results demonstrate that our scheme achieves a higher reliability of the 3D ONoC structure when we make the control decision for process manufacturing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种云支持的过程制造控制决策cps方法:3D ONoC
信息物理系统(CPS)的概念现在在系统工程中引起了人们的注意,并被应用于半导体制造等过程中的全自动工厂控制。在本文中,我们提出了一种新的过程制造控制决策结构,称为基于云支持的CPS概念的3D光片上网络(ONoC)多核系统。我们首先构建了一个任务图——其中包括相互连接的虚拟机(vm)——来表示工业物理过程和网络状态之间的交互。在给定任务图的情况下,控制决策过程就变成了片上虚拟机放置的问题。在保证三维ONoC结构可靠性的前提下,设计了一个高可靠性的片上VM放置调度,以找到最优的控制策略。仿真结果表明,该方案在工艺制造控制决策中具有较高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on performance evaluation and status-based decision for cyber-physical production systems Optimization of deterministic timed weighted marked graphs An optimization-simulation approach for long term care structure assignment problem for elderly people Stochastic simulation of clinical pathways from raw health databases A circuit-breaker use-case operated by a humanoid in aircraft manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1