Evaluation of an optical electric field sensor for measurement of specific absorption rate (SAR) during magnetic resonance imaging

B. Loader, A. Gregory, D. Bownds, F. Seifert
{"title":"Evaluation of an optical electric field sensor for measurement of specific absorption rate (SAR) during magnetic resonance imaging","authors":"B. Loader, A. Gregory, D. Bownds, F. Seifert","doi":"10.1109/EMCEUROPE.2012.6396819","DOIUrl":null,"url":null,"abstract":"This paper examines the measurement of the specific absorption rate (SAR) of radio frequency energy during magnetic resonance imaging using an optical electric field sensor (OEFS). The sensor was used to measure SAR in a simple phantom during a 3-Tesla MRI scan and the results compared to computer simulations and also those obtained through temperature measurements. Good agreement is demonstrated. The optical electric field sensor has much higher sensitivity for SAR measurement than thermometers and the measurements are much quicker. The application of this technology allows the spatial distributions of SAR within phantoms during MRI to be measured.","PeriodicalId":377100,"journal":{"name":"International Symposium on Electromagnetic Compatibility - EMC EUROPE","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Electromagnetic Compatibility - EMC EUROPE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEUROPE.2012.6396819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper examines the measurement of the specific absorption rate (SAR) of radio frequency energy during magnetic resonance imaging using an optical electric field sensor (OEFS). The sensor was used to measure SAR in a simple phantom during a 3-Tesla MRI scan and the results compared to computer simulations and also those obtained through temperature measurements. Good agreement is demonstrated. The optical electric field sensor has much higher sensitivity for SAR measurement than thermometers and the measurements are much quicker. The application of this technology allows the spatial distributions of SAR within phantoms during MRI to be measured.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在磁共振成像中测量比吸收率(SAR)的光电场传感器的评价
本文研究了利用光学电场传感器(OEFS)测量磁共振成像过程中射频能量的比吸收率(SAR)。该传感器用于在3特斯拉MRI扫描期间测量简单幻影的SAR,并将结果与计算机模拟和通过温度测量获得的结果进行比较。证明了良好的一致性。光学电场传感器对SAR测量具有比温度计更高的灵敏度和更快的测量速度。该技术的应用允许在MRI期间测量幻影内SAR的空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antenna factor determination with Antenna Impedance measurements Determination of common mode currents with generalized mixed mode parameters An overview of the impacts of three high power electromagnetic (HPEM) threats on Smart Grids Terahertz metamaterials with dual band high refractive index Time-domain test for material electromagnetic pulse shielding effectiveness based on shielding black-box windows method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1