{"title":"A new multi-prototype based clustering algorithm","authors":"Lu Wang, Huidong Wang, Chuanzheng Bai","doi":"10.1109/ICIST52614.2021.9440589","DOIUrl":null,"url":null,"abstract":"K-means is a well-known prototype based clustering algorithm for its simplicity and efficiency. However, most k-means methods assume different classes are represented by one prototype, which makes a limit of k-means algorithms. Recently, multi-prototype clustering methods have been raised to tackle this problem, which composed of two stages: split stage and merge stage. For multi-prototype algorithms, a proper prototype number plays a vital role in the algorithm performance and it is generally given by users in a trial and error way. In this paper, a new incremental k-means clustering algorithm is designed to determine the propriate prototype number automatically. Firstly, a new indicator is presented to judge whether the number of prototype is appropriate in the split stage. Secondly, a new merge indicator is defined according to the distance formula from datapoint to hyperplane in the merge stage. Finally, simulation results on 8 datasets illustrate the effectiveness and superiority of the proposed algorithm.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"14 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
K-means is a well-known prototype based clustering algorithm for its simplicity and efficiency. However, most k-means methods assume different classes are represented by one prototype, which makes a limit of k-means algorithms. Recently, multi-prototype clustering methods have been raised to tackle this problem, which composed of two stages: split stage and merge stage. For multi-prototype algorithms, a proper prototype number plays a vital role in the algorithm performance and it is generally given by users in a trial and error way. In this paper, a new incremental k-means clustering algorithm is designed to determine the propriate prototype number automatically. Firstly, a new indicator is presented to judge whether the number of prototype is appropriate in the split stage. Secondly, a new merge indicator is defined according to the distance formula from datapoint to hyperplane in the merge stage. Finally, simulation results on 8 datasets illustrate the effectiveness and superiority of the proposed algorithm.