Discovering the Structure of Cloud Applications Using Sampled Packet Traces

Hiroya Matsuba, M. Hiltunen, Kaustubh R. Joshi, R. Schlichting
{"title":"Discovering the Structure of Cloud Applications Using Sampled Packet Traces","authors":"Hiroya Matsuba, M. Hiltunen, Kaustubh R. Joshi, R. Schlichting","doi":"10.1109/IC2E.2014.45","DOIUrl":null,"url":null,"abstract":"Accurate and up-to-date knowledge of how a cloud tenant's VMs utilize the underlying cloud infrastructure is essential for many cloud management tasks including tenant onboarding, optimized VM placement, performance optimization, and debugging. Unfortunately, existing solutions such as instrumentation at the hypervisors or standard networking protocols such as LLDP only provide a partial picture of cloud tenant's application structures and how they stress the underlying infrastructure. In this paper, we consider whether it is possible to use sFlow, a standardized mechanism for packet header sampling available in most commodity network switches, to extract such information in an accurate and scalable manner. We overcome the challenges posed by the purely passive and highly sampled nature of sFlow data, and describe a tool, sFinder, that automatically and continuously extracts such information. Our evaluation using sampled sFlow data from a real private cloud show that sFinder is accurate and efficient.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate and up-to-date knowledge of how a cloud tenant's VMs utilize the underlying cloud infrastructure is essential for many cloud management tasks including tenant onboarding, optimized VM placement, performance optimization, and debugging. Unfortunately, existing solutions such as instrumentation at the hypervisors or standard networking protocols such as LLDP only provide a partial picture of cloud tenant's application structures and how they stress the underlying infrastructure. In this paper, we consider whether it is possible to use sFlow, a standardized mechanism for packet header sampling available in most commodity network switches, to extract such information in an accurate and scalable manner. We overcome the challenges posed by the purely passive and highly sampled nature of sFlow data, and describe a tool, sFinder, that automatically and continuously extracts such information. Our evaluation using sampled sFlow data from a real private cloud show that sFinder is accurate and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用采样报文轨迹发现云应用的结构
准确和最新地了解云租户的VM如何利用底层云基础设施对于许多云管理任务至关重要,包括租户入职、优化的VM放置、性能优化和调试。不幸的是,现有的解决方案(如管理程序中的检测)或标准网络协议(如LLDP)只能提供云租户的应用程序结构以及它们如何对底层基础设施施加压力的部分情况。在本文中,我们考虑是否有可能使用sFlow,一种在大多数商品网络交换机中可用的包头采样的标准化机制,以准确和可扩展的方式提取这些信息。我们克服了sFlow数据纯粹被动和高采样性质所带来的挑战,并描述了一种自动连续提取此类信息的工具sFinder。我们使用来自真实私有云的sFlow采样数据进行评估,结果表明sFinder是准确和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Declarative and Imperative Cloud Application Provisioning Based on TOSCA Splicing MPLS and OpenFlow Tunnels Based on SDN Paradigm CoMoT -- A Platform-as-a-Service for Elasticity in the Cloud A Verification Platform for SDN-Enabled Applications Extraction of Bridges from High Resolution Remote Sensing Image Based on Topology Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1