Modeling and Visualization of Group Knowledge Construction based on Cohesion Metrics in Data Inquiry Learning

Xiaoying Qi, Bian Wu
{"title":"Modeling and Visualization of Group Knowledge Construction based on Cohesion Metrics in Data Inquiry Learning","authors":"Xiaoying Qi, Bian Wu","doi":"10.1109/ICALT52272.2021.00045","DOIUrl":null,"url":null,"abstract":"Group knowledge construction is seen as a symbol of effective collaboration. The quality of collaborative knowledge construction can be understood through the extended analysis of discourse. Cohesion is the basis of dialogue discourse, indicating the consistency of contextual topics in conversation. The study adopts natural language processing (NLP) and machine learning approaches based on discourse cohesion metrics to model and visualize the process of group knowledge construction. The three dimensions of cohesion metrics includes internal cohesion, social impact and responsivity. A group conversation dataset (participant N = 3, utterance N = 2,595) in the context of data inquiry learning is used for analyzing individual performance. Combined with the analysis of the actual conversation content, the visualization results show that it can describe the performance of participants in the group knowledge construction effectively. It has great potential to assist instructors to monitor and evaluate each participant’s performance in group discussion efficiently and provide guidance and scaffolds from the perspective of collaboration quality.","PeriodicalId":170895,"journal":{"name":"2021 International Conference on Advanced Learning Technologies (ICALT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT52272.2021.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Group knowledge construction is seen as a symbol of effective collaboration. The quality of collaborative knowledge construction can be understood through the extended analysis of discourse. Cohesion is the basis of dialogue discourse, indicating the consistency of contextual topics in conversation. The study adopts natural language processing (NLP) and machine learning approaches based on discourse cohesion metrics to model and visualize the process of group knowledge construction. The three dimensions of cohesion metrics includes internal cohesion, social impact and responsivity. A group conversation dataset (participant N = 3, utterance N = 2,595) in the context of data inquiry learning is used for analyzing individual performance. Combined with the analysis of the actual conversation content, the visualization results show that it can describe the performance of participants in the group knowledge construction effectively. It has great potential to assist instructors to monitor and evaluate each participant’s performance in group discussion efficiently and provide guidance and scaffolds from the perspective of collaboration quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据探究学习中基于内聚度量的群体知识构建建模与可视化
群体知识建构被视为有效协作的象征。协作知识建构的质量可以通过话语的延伸分析来理解。衔接是对话语篇的基础,表明对话中语境话题的一致性。本研究采用自然语言处理(NLP)和基于语篇衔接度量的机器学习方法对群体知识构建过程进行建模和可视化。凝聚力度量的三个维度包括内部凝聚力、社会影响和响应性。在数据探究学习的背景下,使用小组会话数据集(参与者N = 3,话语N = 2,595)来分析个人表现。结合对实际会话内容的分析,可视化结果表明,它可以有效地描述参与者在小组知识构建中的表现。它具有很大的潜力,可以帮助教师有效地监控和评估每个参与者在小组讨论中的表现,并从协作质量的角度提供指导和脚手架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro-Prompt: A Strategy for Designing Pedagogically Effective Assignment Free Micro-Lectures for Online Education Systems An Exploratory Study to Identify Learners' Programming Behavior Interactions Automatic and Intelligent Recommendations to Support Students’ Self-Regulation VEA: A Virtual Environment for Animal experimentation Teachers’ Information and Communication Technology (ICT) Assessment Tools: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1