Prospectus Language and IPO Performance

Jared Sharpe, Keith S. Decker
{"title":"Prospectus Language and IPO Performance","authors":"Jared Sharpe, Keith S. Decker","doi":"10.18653/v1/2022.finnlp-1.21","DOIUrl":null,"url":null,"abstract":"Pricing a firm’s Initial Public Offering (IPO) has historically been very difficult, with high average returns on the first-day of trading. Furthermore, IPO withdrawal, the event in which companies who file to go public ultimately rescind the application before the offering, is an equally challenging prediction problem. This research utilizes word embedding techniques to evaluate existing theories concerning firm sentiment on first-day trading performance and the probability of withdrawal, which has not yet been explored empirically. The results suggest that firms attempting to go public experience a decreased probability of withdrawal with the increased presence of positive, litigious, and uncertain language in their initial prospectus, while the increased presence of strong modular language leads to an increased probability of withdrawal. The results also suggest that frequent or large adjustments in the strong modular language of subsequent filings leads to smaller first-day returns.","PeriodicalId":331851,"journal":{"name":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.finnlp-1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pricing a firm’s Initial Public Offering (IPO) has historically been very difficult, with high average returns on the first-day of trading. Furthermore, IPO withdrawal, the event in which companies who file to go public ultimately rescind the application before the offering, is an equally challenging prediction problem. This research utilizes word embedding techniques to evaluate existing theories concerning firm sentiment on first-day trading performance and the probability of withdrawal, which has not yet been explored empirically. The results suggest that firms attempting to go public experience a decreased probability of withdrawal with the increased presence of positive, litigious, and uncertain language in their initial prospectus, while the increased presence of strong modular language leads to an increased probability of withdrawal. The results also suggest that frequent or large adjustments in the strong modular language of subsequent filings leads to smaller first-day returns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
招股说明书语言与IPO业绩
公司首次公开募股(IPO)的定价历来非常困难,因为上市首日的平均回报率很高。此外,IPO撤回(申请上市的公司最终在发行前撤回申请)也是一个同样具有挑战性的预测问题。本研究利用词嵌入技术来评估有关公司情绪对首日交易业绩和退出概率的现有理论,但尚未进行实证研究。结果表明,试图上市的公司在最初的招股说明书中增加积极的、诉讼的和不确定的语言,会降低退出的可能性,而增加强大的模块化语言会增加退出的可能性。结果还表明,在随后的申报中频繁或大幅调整强大的模块化语言会导致首日回报较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AstBERT: Enabling Language Model for Financial Code Understanding with Abstract Syntax Trees Automatic Term and Sentence Classification Via Augmented Term and Pre-trained language model in ESG Taxonomy texts Ranking Environment, Social And Governance Related Concepts And Assessing Sustainability Aspect of Financial Texts TweetFinSent: A Dataset of Stock Sentiments on Twitter Using Transformer-based Models for Taxonomy Enrichment and Sentence Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1