Experiments on machine learning techniques for sensor fusion

Katti Faceli, A.C.P.L.F. de Carvalho, S. Rezende
{"title":"Experiments on machine learning techniques for sensor fusion","authors":"Katti Faceli, A.C.P.L.F. de Carvalho, S. Rezende","doi":"10.1109/ICCIMA.2001.970502","DOIUrl":null,"url":null,"abstract":"Mobile robots rely on sensor data to have a representation of their environment. However the sensors usually provide incomplete, inconsistent or inaccurate information. Sensor fusion has been successfully employed to enhance the accuracy of sensor measures. This article proposes and investigates the use of artificial intelligence techniques for sensor fusion to improve the accuracy and reliability of a distance between a robot and an object in its work environment.","PeriodicalId":232504,"journal":{"name":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2001.970502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mobile robots rely on sensor data to have a representation of their environment. However the sensors usually provide incomplete, inconsistent or inaccurate information. Sensor fusion has been successfully employed to enhance the accuracy of sensor measures. This article proposes and investigates the use of artificial intelligence techniques for sensor fusion to improve the accuracy and reliability of a distance between a robot and an object in its work environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器融合的机器学习技术实验
移动机器人依靠传感器数据来表示它们的环境。然而,传感器通常提供不完整、不一致或不准确的信息。传感器融合已被成功地用于提高传感器测量的精度。本文提出并研究了使用人工智能技术进行传感器融合,以提高机器人与工作环境中物体之间距离的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acquisition of stair like structure by gift Data visualization tools for 3SAT instances An intelligent tutoring system for teaching and learning Hoare logic Consideration to computer generated force for defence systems Design and implementation of MPEG-4 authoring tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1