Operator splitting for solving C-Root, a minimalist and continuous model of root system growth

E. Tillier, A. Bonneu
{"title":"Operator splitting for solving C-Root, a minimalist and continuous model of root system growth","authors":"E. Tillier, A. Bonneu","doi":"10.1109/PMA.2012.6524863","DOIUrl":null,"url":null,"abstract":"Root systems are complex structures and it is still a great challenge to model them. There are different types of plant growth models. At one extreme, architecturals models, and at another extreme, density based models. Modeling root system growth with continuous equations is attractive for at least two reasons. First, since the development of roots is defined independently of the number of roots, such models can be used to work at field scale. Secondly, continuous models are formulated with partial differential equations (PDE) and thus are good candidates for coupling with other models like nutrient models or soil models which are of the same nature. Considering this type of applications, it obviously implies that coefficients of the PDE equations are functions of space and time. Thus appropriate numerical schemes should be used to solve and calibrate the models. These schemes has to be stable, accurate and efficient. Bonneu et al ([4]) introduces a continuous and minimalist model, named C-Root, for modeling the root system growth. In this paper, we focus on this model to study different operator splitting approaches for solving it. Some numerical results obtained, for a one-dimensional case, with data about eucalyptus roots are given.","PeriodicalId":117786,"journal":{"name":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2012.6524863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Root systems are complex structures and it is still a great challenge to model them. There are different types of plant growth models. At one extreme, architecturals models, and at another extreme, density based models. Modeling root system growth with continuous equations is attractive for at least two reasons. First, since the development of roots is defined independently of the number of roots, such models can be used to work at field scale. Secondly, continuous models are formulated with partial differential equations (PDE) and thus are good candidates for coupling with other models like nutrient models or soil models which are of the same nature. Considering this type of applications, it obviously implies that coefficients of the PDE equations are functions of space and time. Thus appropriate numerical schemes should be used to solve and calibrate the models. These schemes has to be stable, accurate and efficient. Bonneu et al ([4]) introduces a continuous and minimalist model, named C-Root, for modeling the root system growth. In this paper, we focus on this model to study different operator splitting approaches for solving it. Some numerical results obtained, for a one-dimensional case, with data about eucalyptus roots are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解C-Root的算子分裂,一个极简连续的根系生长模型
根系是复杂的结构,对其进行建模仍然是一个巨大的挑战。有不同类型的植物生长模式。一个极端是建筑模型,另一个极端是基于密度的模型。用连续方程模拟根系生长很有吸引力,至少有两个原因。首先,由于根的发展与根的数量无关,因此这些模型可以用于野外尺度。其次,连续模型是用偏微分方程(PDE)表示的,因此是与其他模型如营养模型或土壤模型等具有相同性质的模型耦合的良好候选。考虑到这种类型的应用,这显然意味着PDE方程的系数是空间和时间的函数。因此,应采用适当的数值格式来求解和校准模型。这些方案必须稳定、准确、高效。Bonneu等([4])引入了一种连续的极简模型C-Root,用于对根系生长进行建模。本文主要研究了求解该模型的算子分裂方法。本文给出了桉树根数据在一维情况下的一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamical feedback between circadian clock and carbohydrate availability explains adaptive response of starch metabolism to longer night Investigating the influence of geometrical traits on light interception efficiency of apple trees: A modelling study with MAppleT A plastic, dynamic and reducible 3D geometric model for simulating gramineous leaves Modeling the environmental and seasonal influence on canopy dynamic and litterfall of even-aged forest ecosystems by a model coupling growth & yield and process-based approaches Assessment of the Role of initial conditions in the setting of heterogeneity of functional Traits in a population of oilseed rape plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1