Deep Convolutional Neural Networks for Weed Detection in Agricultural Crops Using Optical Aerial Images

W. Ramirez, P. Achanccaray, Leonardo A. F. Mendoza, Marco Aurélio Cavalcanti Pacheco
{"title":"Deep Convolutional Neural Networks for Weed Detection in Agricultural Crops Using Optical Aerial Images","authors":"W. Ramirez, P. Achanccaray, Leonardo A. F. Mendoza, Marco Aurélio Cavalcanti Pacheco","doi":"10.1109/LAGIRS48042.2020.9165562","DOIUrl":null,"url":null,"abstract":"The presence of weeds in agricultural crops has been one of the problems of greatest interest in recent years as they consume natural resources and negatively affect the agricultural process. For this purpose, a model has been implemented to segment weed in aerial images. The proposed model relies on DeepLabv3 architecture trained upon patches extracted from high-resolution aerial imagery. The dataset employed consisted in 5 high-resolution images that describes a sugar beet agricultural field in Germany. SegNet and U-Net architectures were selected for comparison purposes. Our results demonstrate that balancing of data, together with a greater spatial context leads better results with DeepLabv3 achieving up to 0.89 and 0.81 in terms of AUC and F1-score, respectively.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The presence of weeds in agricultural crops has been one of the problems of greatest interest in recent years as they consume natural resources and negatively affect the agricultural process. For this purpose, a model has been implemented to segment weed in aerial images. The proposed model relies on DeepLabv3 architecture trained upon patches extracted from high-resolution aerial imagery. The dataset employed consisted in 5 high-resolution images that describes a sugar beet agricultural field in Germany. SegNet and U-Net architectures were selected for comparison purposes. Our results demonstrate that balancing of data, together with a greater spatial context leads better results with DeepLabv3 achieving up to 0.89 and 0.81 in terms of AUC and F1-score, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光学航空图像的农作物杂草检测的深度卷积神经网络
由于杂草消耗自然资源并对农业生产过程产生负面影响,近年来,农作物中杂草的存在已成为人们最感兴趣的问题之一。为此,实现了航拍图像中杂草的分割模型。提出的模型依赖于DeepLabv3架构,该架构基于从高分辨率航空图像中提取的斑块进行训练。所使用的数据集包括5张描述德国甜菜农田的高分辨率图像。为了比较,我们选择了SegNet和U-Net架构。我们的研究结果表明,数据的平衡以及更大的空间背景导致了更好的结果,DeepLabv3在AUC和f1得分方面分别达到了0.89和0.81。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1