Fast Alternating Minimization Method for Compressive Sensing MRI under Wavelet Sparsity and TV Sparsity

Yonggui Zhu, I. Chern
{"title":"Fast Alternating Minimization Method for Compressive Sensing MRI under Wavelet Sparsity and TV Sparsity","authors":"Yonggui Zhu, I. Chern","doi":"10.1109/ICIG.2011.23","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the alternating minimization algorithm proposed in [ Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2 (2011), pp. 44-51] to compressive sensing MRI model with wavelet sparsity and total variation(TV) sparsity simultaneously. This extended approach can reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. We also give the convergence analysis of extended alternating minimization method. Some MR images are employed to test in the numerical experiments, and the results demonstrate that the alternating minimization method is very efficient in MRI reconstruction.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we extend the alternating minimization algorithm proposed in [ Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2 (2011), pp. 44-51] to compressive sensing MRI model with wavelet sparsity and total variation(TV) sparsity simultaneously. This extended approach can reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. We also give the convergence analysis of extended alternating minimization method. Some MR images are employed to test in the numerical experiments, and the results demonstrate that the alternating minimization method is very efficient in MRI reconstruction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波稀疏性和电视稀疏性的压缩感知MRI快速交替最小化方法
在本文中,我们将[Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2011, 2, pp. 44-51]中提出的交替最小化算法扩展到同时具有小波稀疏性和总变差(TV)稀疏性的压缩感知MRI模型。这种扩展的方法可以从欠采样的k空间数据,即部分傅里叶数据重建MR图像。并给出了扩展交替最小化方法的收敛性分析。利用部分核磁共振图像进行数值实验,结果表明交替极小化方法在核磁共振重建中是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1