Optimization of Deep Learning Inference on Edge Devices

Endah Kristiani, Chao-Tung Yang, K. L. Phuong Nguyen
{"title":"Optimization of Deep Learning Inference on Edge Devices","authors":"Endah Kristiani, Chao-Tung Yang, K. L. Phuong Nguyen","doi":"10.1109/ICPAI51961.2020.00056","DOIUrl":null,"url":null,"abstract":"Concerning Artificial Intelligence (AI)-based applications, it is necessary to reduce latency in real-time inference. This paper implements and compares two separate models, Inception V3 and Mobilenet, using Intel Neural Compute Stick (NCS) 2 and Raspberry Pi 4 as the edge devices. The Model Optimizer (MO), which generates an Intermediate Rep- resentation (IR) of the network, is used for optimizing these models. Then, the IR models are inferences in the edge device. Finally, the comparison of frame per second speed (FPS) and precision is provided. The results show that the speed on Inception V3 is 9 frames per second, while that on Mobilenet is 24 frames per second. Simultaneously, the accuracy reaches 41.28% on Inception V3, but misclassifies for Nissan Altima 2014, and reaches 71.29% on Mobilenet with right classification for Toyota Camry 2014.","PeriodicalId":330198,"journal":{"name":"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Pervasive Artificial Intelligence (ICPAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPAI51961.2020.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Concerning Artificial Intelligence (AI)-based applications, it is necessary to reduce latency in real-time inference. This paper implements and compares two separate models, Inception V3 and Mobilenet, using Intel Neural Compute Stick (NCS) 2 and Raspberry Pi 4 as the edge devices. The Model Optimizer (MO), which generates an Intermediate Rep- resentation (IR) of the network, is used for optimizing these models. Then, the IR models are inferences in the edge device. Finally, the comparison of frame per second speed (FPS) and precision is provided. The results show that the speed on Inception V3 is 9 frames per second, while that on Mobilenet is 24 frames per second. Simultaneously, the accuracy reaches 41.28% on Inception V3, but misclassifies for Nissan Altima 2014, and reaches 71.29% on Mobilenet with right classification for Toyota Camry 2014.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘设备上深度学习推理的优化
对于基于人工智能(AI)的应用,需要减少实时推理的延迟。本文使用Intel Neural Compute Stick (NCS) 2和Raspberry Pi 4作为边缘设备,实现并比较了Inception V3和Mobilenet两个独立的模型。模型优化器(MO)生成网络的中间表示(IR),用于优化这些模型。然后,在边缘器件中推导红外模型。最后,对帧速率和精度进行了比较。结果表明,Inception V3上的速度为9帧/秒,而Mobilenet上的速度为24帧/秒。同时,在盗梦空间V3上准确率达到41.28%,但对日产Altima 2014分类错误;在Mobilenet上准确率达到71.29%,但对丰田凯美瑞2014分类正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autoclave Molding Artificial Intelligence (AI) Method and Apparatus System of Composite Materials for Aerospace Applications A New Network Intrusion Detection based on Semi-supervised Dimensionality Reduction and Tri-LightGBM The New Structure of Solar Water Heating Tank with Energy Saving Comparisons of Energy Loss Reduction by Phase Balancing in Unbalance Distribution Networks via Metaheuristic Algorithms A New Approach for Natural Language Understanding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1