{"title":"MatMat: Matrix Factorization by Matrix Fitting","authors":"Hao Wang","doi":"10.1109/ICISCAE52414.2021.9590639","DOIUrl":null,"url":null,"abstract":"Matrix factorization is a widely adopted recommender system technique that fits scalar rating values by dot products of user feature vectors and item feature vectors. However, the formulation of matrix factorization as a scalar fitting problem is not friendly to side information incorporation or multi-task learning. In this paper, we replace the scalar values of the user rating matrix by matrices, and fit the matrix values by matrix products of user feature matrix and item feature matrix. Our framework is friendly to multitask learning and side information incorporation. We use popularity data as side information in our paper in particular to enhance the performance of matrix factorization techniques. In the experiment section, we prove the competence of our method compared with other approaches using both accuracy and fairness metrics. Our framework is an ideal substitute for tensor factorization in context-aware recommendation and many other scenarios.","PeriodicalId":121049,"journal":{"name":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE52414.2021.9590639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Matrix factorization is a widely adopted recommender system technique that fits scalar rating values by dot products of user feature vectors and item feature vectors. However, the formulation of matrix factorization as a scalar fitting problem is not friendly to side information incorporation or multi-task learning. In this paper, we replace the scalar values of the user rating matrix by matrices, and fit the matrix values by matrix products of user feature matrix and item feature matrix. Our framework is friendly to multitask learning and side information incorporation. We use popularity data as side information in our paper in particular to enhance the performance of matrix factorization techniques. In the experiment section, we prove the competence of our method compared with other approaches using both accuracy and fairness metrics. Our framework is an ideal substitute for tensor factorization in context-aware recommendation and many other scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵拟合的矩阵分解
矩阵分解是一种被广泛采用的推荐系统技术,它通过用户特征向量与项目特征向量的点积拟合标量评价值。然而,将矩阵分解表述为标量拟合问题不利于边信息合并或多任务学习。本文将用户评价矩阵的标量值替换为矩阵,并用用户特征矩阵与物品特征矩阵的矩阵积来拟合矩阵值。我们的框架是友好的多任务学习和侧信息合并。在本文中,我们特别使用人气数据作为侧信息来提高矩阵分解技术的性能。在实验部分,我们使用准确性和公平性指标证明了我们的方法与其他方法相比的能力。我们的框架是上下文感知推荐和许多其他场景中张量分解的理想替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient stability control system based on mapping cloud and online pre decision Tracking Control of Neural System using Adaptive Sliding Mode Control for Unknown Nonlinear Function Deep Self-Supervised Learning for Oracle Bone Inscriptions Features Representation Experimental Teaching Platform Development for Topological Sorting Algorithm Education Virtual Service Failure Recovery Algorithm Based on Particle Swarm in IPv6 Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1