Recursive estimation of shape and nonrigid motion

D. Metaxes, Demetri Terzopoulos
{"title":"Recursive estimation of shape and nonrigid motion","authors":"D. Metaxes, Demetri Terzopoulos","doi":"10.1109/WVM.1991.212770","DOIUrl":null,"url":null,"abstract":"The authors paper presents an approach for recursively estimating 3D object shape and general nonrigid motion, which makes use of physically based dynamic models. The models provide global deformation parameters which represent the salient shape features of natural parts, and local deformation parameters which capture shape details. The equations of motion governing the models, augmented by point-to-point constraints, make them responsive to externally applied forces. The authors extend this system of differential equations to formulate a shape and nonrigid motion estimator, a nonlinear Kalman filter, that recursively transforms the discrepancy between the data and the estimated model state into generalized forces while formally accounting for uncertainty in the observations. A Riccati update process maintains a covariance matrix that adjusts the forces in accordance with the system dynamics and the current and prior observations. The estimator applies the transformed forces to adjust the translational, rotational, and deformational degrees of freedom such that the model evolves as consistently as possible with the noisy data. The authors present model fitting and motion tracking experiments of articulated flexible objects from real and synthetic noise-corrupted 3D data.<<ETX>>","PeriodicalId":208481,"journal":{"name":"Proceedings of the IEEE Workshop on Visual Motion","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1991.212770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The authors paper presents an approach for recursively estimating 3D object shape and general nonrigid motion, which makes use of physically based dynamic models. The models provide global deformation parameters which represent the salient shape features of natural parts, and local deformation parameters which capture shape details. The equations of motion governing the models, augmented by point-to-point constraints, make them responsive to externally applied forces. The authors extend this system of differential equations to formulate a shape and nonrigid motion estimator, a nonlinear Kalman filter, that recursively transforms the discrepancy between the data and the estimated model state into generalized forces while formally accounting for uncertainty in the observations. A Riccati update process maintains a covariance matrix that adjusts the forces in accordance with the system dynamics and the current and prior observations. The estimator applies the transformed forces to adjust the translational, rotational, and deformational degrees of freedom such that the model evolves as consistently as possible with the noisy data. The authors present model fitting and motion tracking experiments of articulated flexible objects from real and synthetic noise-corrupted 3D data.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形状和非刚体运动的递归估计
本文提出了一种利用基于物理的动态模型递归估计三维物体形状和一般非刚体运动的方法。该模型提供了代表自然零件显著形状特征的全局变形参数和捕捉形状细节的局部变形参数。控制模型的运动方程,加上点对点的约束,使它们对外部施加的力作出响应。作者扩展了这个微分方程系统,形成了一个形状和非刚性运动估计器,一个非线性卡尔曼滤波器,递归地将数据和估计模型状态之间的差异转换为广义力,同时正式考虑了观测中的不确定性。Riccati更新过程维护一个协方差矩阵,该矩阵根据系统动力学以及当前和先前的观测值来调整力。估计器应用转换后的力来调整平移、旋转和变形自由度,使模型尽可能地与噪声数据一致地发展。作者从真实的和合成的噪声破坏的三维数据中给出了铰接柔性物体的模型拟合和运动跟踪实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental estimation of image-flow using a Kalman filter Structure and motion in two dimensions from multiple images: a least squares approach An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation Stability of phase information Motion tracking on the spatiotemporal surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1