AIM: an Auto-Augmenter for Images and Meshes

Vinit Veerendraveer Singh, C. Kambhamettu
{"title":"AIM: an Auto-Augmenter for Images and Meshes","authors":"Vinit Veerendraveer Singh, C. Kambhamettu","doi":"10.1109/CVPR52688.2022.00080","DOIUrl":null,"url":null,"abstract":"Data augmentations are commonly used to increase the robustness of deep neural networks. In most contemporary research, the networks do not decide the augmentations; they are task-agnostic, and grid search determines their magnitudes. Furthermore, augmentations applicable to lower-dimensional data do not easily extend to higher-dimensional data and vice versa. This paper presents an auto-augmenter for images and meshes (AIM) that easily incorporates into neural networks at training and inference times. It Jointly optimizes with the network to produce constrained, non-rigid deformations in the data. AIM predicts sample-aware deformations suited for a task, and our experiments confirm its effectiveness with various networks.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentations are commonly used to increase the robustness of deep neural networks. In most contemporary research, the networks do not decide the augmentations; they are task-agnostic, and grid search determines their magnitudes. Furthermore, augmentations applicable to lower-dimensional data do not easily extend to higher-dimensional data and vice versa. This paper presents an auto-augmenter for images and meshes (AIM) that easily incorporates into neural networks at training and inference times. It Jointly optimizes with the network to produce constrained, non-rigid deformations in the data. AIM predicts sample-aware deformations suited for a task, and our experiments confirm its effectiveness with various networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目标:图像和网格的自动增强器
数据增强通常用于增强深度神经网络的鲁棒性。在大多数当代研究中,网络并不决定增强;它们与任务无关,网格搜索决定了它们的大小。此外,适用于低维数据的增强不容易扩展到高维数据,反之亦然。本文提出了一种图像和网格的自动增强器(AIM),它可以在训练和推理时轻松地融入神经网络。它与网络共同优化,在数据中产生约束的非刚性变形。AIM预测适合任务的样本感知变形,我们的实验证实了它在各种网络中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1